Porcine respiratory disease complex represents a major challenge for the swine industry, with swine influenza A virus (swIAV) and porcine reproductive and respiratory syndrome virus (PRRSV) being major contributors. Epidemiological studies have confirmed the co-circulation of these viruses in pig herds, making swIAV-PRRSV co-infections expected. A couple of co-infection studies have reported replication interferences between these two viruses.
View Article and Find Full Text PDFPorcine respiratory complex syndrome has a strong economic impact on the swine breeding sector, as well as a clear repercussion on the wellbeing of the animals, leading to overuse of antimicrobial molecules. Algal extracts used in short-term treatments are empirically recognized by farmers as having a positive effect on pigs' health, however, their mechanisms of action are not well known and more research is needed. Herein we studied the short and median term impact of three algal extracts, in vitro, on the pro-inflammatory and antiviral responses of porcine primary blood monocytes and alveolar macrophages, as well as the susceptibility of the treated cells to infection by Porcine Respiratory and Reproductive Syndrome Virus (PRRSV) and the Aujeszky's Disease Virus (ADV).
View Article and Find Full Text PDFLymph nodes (LN) are the crossroad where naïve lymphocytes, peripheral antigens and antigen presenting cells contact together in order to mount an adaptive immune response. For this purpose, LN are highly organized convergent hubs of blood and lymphatic vessels that, in the case of B lymphocytes, lead to the B cell follicles. Herein take place the selection and maturation of B cell clones producing high affinity antibodies directed against various antigens.
View Article and Find Full Text PDFBackground: Ticks represent a major health issue for humans and domesticated animals. Exploring the expression landscape of the tick's central nervous system (CNS), known as the synganglion, would be an important step in understanding tick physiology and in managing tick-borne diseases, but studies on that topic are still relatively scarce. Neuron-specific genes like the cys-loop ligand-gated ion channels (cys-loop LGICs, or cysLGICs) are important pharmacological targets of acaricides.
View Article and Find Full Text PDF