Publications by authors named "C Hash"

Transpiration efficiency (TE), the biomass produced per unit of water transpired, is a key trait for crop performance under limited water. As water becomes scarce, increasing TE would contribute to increase crop drought tolerance. This study is a first step to explore pearl millet genotypic variability for TE on a large and representative diversity panel.

View Article and Find Full Text PDF

We have previously reported that there is a tight link between high transpiration efficiency (TE; shoot biomass per unit water transpired) and restriction of transpiration under high vapor pressure deficit (VPD). In this study, we examine other factors affecting TE among major C4 cereals, namely species' differences, soil type, and source-sink relationships. We found that TE in maize (10 genotypes) was higher overall than in pearl millet (10 genotypes), and somewhat higher than in sorghum (16 genotypes).

View Article and Find Full Text PDF

This study was conducted to dissect the genetic basis and to explore the candidate genes underlying one of the important genomic regions on an SBI-10 long arm (L), governing the complex stay-green trait contributing to post-flowering drought-tolerance in sorghum. A fine-mapping population was developed from an introgression line cross-RSG04008-6 (stay-green) × J2614-11 (moderately senescent). The fine-mapping population with 1894 F was genotyped with eight SSRs and a set of 152 recombinants was identified, advanced to the F generation, field evaluated with three replications over 2 seasons, and genotyped with the GBS approach.

View Article and Find Full Text PDF

Pearl millet is an important crop for arid and semi-arid regions of the world. Genomic regions associated with combining ability for yield-related traits under irrigated and drought conditions are useful in heterosis breeding programs. Chromosome segment substitution lines (CSSLs) are excellent genetic resources for precise QTL mapping and identifying naturally occurring favorable alleles.

View Article and Find Full Text PDF

Pearl millet plays a major role in food security in arid and semi-arid areas of Africa and India. However, it lags behind the other cereal crops in terms of genetic improvement. The recent sequencing of its genome opens the way to the use of modern genomic tools for breeding.

View Article and Find Full Text PDF