The molecular profiling of circulating tumor DNA (ctDNA) is a helpful tool not only in cancer treatment, but also in the early detection of relapse. However, the clinical interpretation of a ctDNA negative result remains challenging. The characterization of circulating nucleosomes (carrying cell-free DNA) and associated epigenetic modifications (playing a key role in the tumorigenesis of different cancers) may provide useful information for patient management, by supporting the contributive value of ctDNA molecular profiling.
View Article and Find Full Text PDFUsing Si as anode materials for Li-ion batteries remain challenging due to its morphological evolution and SEI modification upon cycling. The present work aims at developing a composite consisting of carbon-coated Si nanoparticles (Si@C NPs) intimately embedded in a three-dimensional (3D) graphene hydrogel (GHG) architecture to stabilize Si inside LiB electrodes. Instead of simply mixing both components, the novelty of the synthesis procedure lies in the in situ hydrothermal process, which was shown to successfully yield graphene oxide reduction, 3D graphene assembly production, and homogeneous distribution of Si@C NPs in the GHG matrix.
View Article and Find Full Text PDFCarbon coatings can help to stabilize the electrochemical performance of high-energy anodes using silicon nanoparticles as the active material. In this work, the comparison of the behavior and chemical composition of the Solid Electrolyte Interphase (SEI) was carried out between Si nanoparticles and carbon-coated Si nanoparticles (Si@C). A combination of two complementary analytical techniques, Electrochemical Impedance Spectroscopy and X-ray Photoelectron Spectroscopy (XPS), was used to determine the intrinsic characteristics of the SEI.
View Article and Find Full Text PDFSilicon nanowires are appealing structures to enhance the capacity of anodes in lithium-ion batteries. However, to attain industrial relevance, their synthesis requires a reduced cost. An important part of the cost is devoted to the silicon growth catalyst, usually gold.
View Article and Find Full Text PDFGermanium is a promising active material for high energy density anodes in Li-ion batteries thanks to its good Li-ion conduction and mechanical properties. However, a deep understanding of the (de)lithiation mechanism of Ge requires advanced characterizations to correlate structural and chemical evolution during charge and discharge. Here we report a combined X-ray diffraction (XRD) and Li solid-state NMR investigation performed on crystalline germanium nanoparticles (c-Ge Nps) based anodes during partial and complete cycling at C/10 Li metal.
View Article and Find Full Text PDF