The mechanisms underlying decadal variability in Arctic sea ice remain actively debated. Here, we show that variability in boreal biomass burning (BB) emissions strongly influences simulated Arctic sea ice on multidecadal time scales. In particular, we find that a strong acceleration in sea ice decline in the early 21st century in the Community Earth System Model version 2 (CESM2) is related to increased variability in prescribed BB emissions in the sixth phase of the Coupled Model Intercomparison Project (CMIP6) through summertime aerosol-cloud interactions.
View Article and Find Full Text PDFModel calibration (or "tuning") is a necessary part of developing and testing coupled ocean-atmosphere climate models regardless of their main scientific purpose. There is an increasing recognition that this process needs to become more transparent for both users of climate model output and other developers. Knowing how and why climate models are tuned and which targets are used is essential to avoiding possible misattributions of skillful predictions to data accommodation and vice versa.
View Article and Find Full Text PDFAn analysis of diabatic heating and moistening processes from 12 to 36 h lead time forecasts from 12 Global Circulation Models are presented as part of the "Vertical structure and physical processes of the Madden-Julian Oscillation (MJO)" project. A lead time of 12-36 h is chosen to constrain the large-scale dynamics and thermodynamics to be close to observations while avoiding being too close to the initial spin-up of the models as they adjust to being driven from the Years of Tropical Convection (YOTC) analysis. A comparison of the vertical velocity and rainfall with the observations and YOTC analysis suggests that the phases of convection associated with the MJO are constrained in most models at this lead time although the rainfall in the suppressed phase is typically overestimated.
View Article and Find Full Text PDF