Publications by authors named "C Haist"

In contrast to class I/IIb/pan histone deacetylase inhibitors (HDACi), the role of class IIa HDACi as anti-cancer chemosensitizing agents is less well understood. Here, we studied the effects of HDAC4 in particular and the class IIa HDACi CHDI0039 on proliferation and chemosensitivity in Cal27 and cisplatin-resistant Cal27CisR head and neck squamous cell cancer (HNSCC). HDAC4 and HDAC5 overexpression clones were generated.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell therapy has demonstrated unprecedented success with high remission rates for heavily pretreated patients with hematological malignancies. The hinge connecting the extracellular antigen recognition unit to the transmembrane domain provides the length and flexibility of the CAR constructs and ensures that the CAR can reach the target antigen and mediate recognition and killing of target cells. The hinge can also include specific amino acid sequences to improve CAR expression, influence T cell proliferation, and facilitate CAR T cell detection, enrichment, and even elimination.

View Article and Find Full Text PDF

The monoclonal antibody cetuximab recognizes domain III of the epithelial growth factor receptor (EGFR) with high-affinity and is an important element in the treatment of several malignancies that overexpress non-mutated wild-type EGFR. In order to create an EGFR recognizing chimeric antigen receptor (CAR) for cellular immunotherapy of head and neck squamous cell carcinoma (HNSCC), we rationally designed single chain fragments of different lengths based on the cetuximab variable heavy and light chains. We then cloned the different cetuximab fragments into our second generation CAR construct, expressed CARs on primary human T-cells from healthy donors using mono- or biscistronic lentiviral vectors and tested the stability, functionality and specificity of the CARs.

View Article and Find Full Text PDF

The great clinical success of chimeric antigen receptor (CAR) T cells has unlocked new levels of immunotherapy for hematological malignancies. Genetically modifying natural killer (NK) cells as alternative CAR immune effector cells is also highly promising, as NK cells can be transplanted across HLA barriers without causing graft-versus-host disease. Therefore, usage of CAR NK cell products might allow to widely expand the clinical indications and to limit the costs of treatment per patient.

View Article and Find Full Text PDF

Immunotherapy including chimeric antigen receptor (CAR) T cell therapy has revolutionized modern cancer therapy and has achieved remarkable remission and survival rates for several malignancies with historically dismal outcomes. The hinge of the CAR connects the antigen binding to the transmembrane domain and can be exploited to confer features to CAR T cells including additional stimulation, targeted elimination or detection and enrichment of the genetically modified cells. For establishing a novel hinge derived from human CD34, we systematically tested CD34 fragments of different lengths, all containing the binding site of the QBend-10 monoclonal antibody, in a FMC63-based CD19 CAR lentiviral construct.

View Article and Find Full Text PDF