Publications by authors named "C H van Os"

Water reabsorption in the renal collecting duct is regulated by the antidiuretic hormone vasopressin (AVP). When the vasopressin V2 receptor, present on the basolateral site of the renal principal cell, becomes activated by AVP, aquaporin-2 (AQP2) water channels will be inserted in the apical membrane, and in this fashion, water can be reabsorbed from the pro-urine into the interstitium. The essential role of the vasopressin V2 receptor and AQP2 in the maintenance of body water homeostasis became clear when it was shown that mutations in their genes cause nephrogenic diabetes insipidus, a disorder in which the kidney is unable to concentrate urine in response to AVP.

View Article and Find Full Text PDF

Vasopressin regulates water homeostasis through insertion of homotetrameric aquaporin-2 (AQP2) water channels in the apical plasma membrane of renal cells. AQP2 mutations cause recessive and dominant nephrogenic diabetes insipidus (NDI), a disease in which the kidney is unable to concentrate urine in response to vasopressin. Until now, all AQP2 mutants in recessive NDI were shown to be misfolded, retained in the endoplasmic reticulum (ER) and unable to interact with wild-type (wt)-AQP2, whereas AQP2 mutants in dominant NDI are properly folded and interact with wt-AQP2, but, due to the mutation, cause missorting of the wt-AQP2/mutant complex.

View Article and Find Full Text PDF

Vasopressin regulates body water conservation by redistributing aquaporin-2 (AQP2) water channels from intracellular vesicles to the apical surface of renal collecting ducts, resulting in water reabsorption from urine. Mutations in AQP2 cause autosomal nephrogenic diabetes insipidus (NDI), a disease characterized by the inability to concentrate urine. Here, we report a frame-shift mutation in AQP2 causing dominant NDI.

View Article and Find Full Text PDF

Introduction: Thiazide diuretics have the unique characteristic of increasing renal Na+ excretion, while decreasing Ca2+ excretion. However, the molecular mechanism responsible for this thiazide-induced hypocalciuria remains unclear. The present study investigates the effect of thiazides on the expression of the proteins involved in active Ca2+ transport as well as the role of extracellular volume (ECV) status.

View Article and Find Full Text PDF

Pseudovitamin D-deficiency rickets (PDDR) is an autosomal disease characterized by hyperparathyroidism, rickets, and undetectable levels of 1,25-dihydroxyvitaminD3 (1,25(OH)2D3). Mice in which the 25-hydroxyvitamin D3-1alpha-hydroxylase (1alpha-OHase) gene was inactivated presented the same clinical phenotype as patients with PDDR and were used to study renal expression of the epithelial Ca2+ channel (ECaC1), the calbindins, Na+/Ca2+ exchanger (NCX1), and Ca2+-ATPase (PMCA1b). Serum Ca2+ (1.

View Article and Find Full Text PDF