Publications by authors named "C H Schunk"

To form blood vessels, endothelial cells rearrange their cytoskeleton, generate traction stresses, migrate, and proliferate, all of which require energy. Despite these energetic costs, stiffening of the extracellular matrix promotes tumor angiogenesis and increases cell contractility. However, the interplay between extracellular matrix, cell contractility, and cellular energetics remains mechanistically unclear.

View Article and Find Full Text PDF

Enclosed public spaces are hotspots for airborne disease transmission. To measure and maintain indoor air quality in terms of airborne transmission, an open source, low cost and distributed array of particulate matter sensors was developed and named Dynamic Aerosol Transport for Indoor Ventilation, or DATIV, system. This system can use multiple particulate matter sensors (PMSs) simultaneously and can be remotely controlled using a Raspberry Pi-based operating system.

View Article and Find Full Text PDF

Advancements in spatial transcriptomics (ST) have enabled an in-depth understanding of complex tissues by quantifying gene expression at spatially localized spots. Several notable clustering methods have been introduced to utilize both spatial and transcriptional information in the analysis of ST datasets. However, data quality across different ST sequencing techniques and types of datasets influence the performance of different methods and benchmarks.

View Article and Find Full Text PDF

During intravasation, cancer cells cross the endothelial barrier and enter the circulation. Extracellular matrix stiffening has been correlated with tumor metastatic potential; however, little is known about the effects of matrix stiffness on intravasation. Here, we utilize in vitro systems, a mouse model, specimens from patients with breast cancer, and RNA expression profiles from The Cancer Genome Atlas Program (TCGA) to investigate the molecular mechanism by which matrix stiffening promotes tumor cell intravasation.

View Article and Find Full Text PDF

Cancer cell migration is highly heterogeneous, and the migratory capability of cancer cells is thought to be an indicator of metastatic potential. It is becoming clear that a cancer cell does not have to be inherently migratory to metastasize, with weakly migratory cancer cells often found to be highly metastatic. However, the mechanism through which weakly migratory cells escape from the primary tumor remains unclear.

View Article and Find Full Text PDF