The incapability to move the facial muscles is known as facial palsy, and it affects various abilities of the patient, for example, performing facial expressions. Recently, automatic approaches aiming to diagnose facial palsy using images and machine learning algorithms have emerged, focusing on providing an objective evaluation of the paralysis severity. This research proposes an approach to analyze and assess the lesion severity as a classification problem with three levels: healthy, slight, and strong palsy.
View Article and Find Full Text PDFHumans express their emotions verbally and through actions, and hence emotions play a fundamental role in facial expressions and body gestures. Facial expression recognition is a popular topic in security, healthcare, entertainment, advertisement, education, and robotics. Detecting facial expressions via gesture recognition is a complex and challenging problem, especially in persons who suffer face impairments, such as patients with facial paralysis.
View Article and Find Full Text PDFThis paper presents a new image segmentation method based on multiple active contours guided by differential evolution, called MACDE. The segmentation method uses differential evolution over a polar coordinate system to increase the exploration and exploitation capabilities regarding the classical active contour model. To evaluate the performance of the proposed method, a set of synthetic images with complex objects, Gaussian noise, and deep concavities is introduced.
View Article and Find Full Text PDF