Phys Chem Chem Phys
December 2024
Molten salts are important in a number of energy applications, but the fundamental mechanisms operating in ionic liquids are poorly understood, particularly at higher temperatures. This is despite their candidacy for deployment in solar cells, next-generation nuclear reactors, and nuclear pyroprocessing. We perform extensive molecular dynamics simulations over a variety of molten chloride salt compositions at varying temperature and pressures to calculate the thermodynamic and transport properties of these liquids.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
While the glass transition is easy to identify macroscopically, the underlying atomic mechanisms which facilitate the transition from amorphous solid to fluid are still poorly understood. We conduct classical molecular dynamics simulations on a variety of inorganic glasses in order to identify these mechanisms. While also modelling larger systems, we find that the essential qualities which constitute a glass and its transition to a liquid are present even in systems containing only a few hundred atoms.
View Article and Find Full Text PDFDigital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins.
View Article and Find Full Text PDFPollution in urban environments is a major health concern for humans as well as the local wildlife and aquatic species. Anthropogenic waste and discharge from storm drainage accumulate nutrients and environmental contaminants in local water systems. Locating contaminated sites using water samples over the vast landscape is a daunting task.
View Article and Find Full Text PDFVolumetric Muscle Loss (VML) injuries are characterized by significant loss of muscle mass, usually due to trauma or surgical resection, often with a residual open wound in clinical settings and subsequent loss of limb function due to the replacement of the lost muscle mass with non-functional scar. Being able to regrow functional muscle in VML injuries is a complex control problem that needs to override robust, evolutionarily conserved healing processes aimed at rapidly closing the defect in lieu of restoration of function. We propose that discovering and implementing this complex control can be accomplished by the development of a Medical Digital Twin of VML.
View Article and Find Full Text PDF