Cyclin-dependent kinases regulate the cell cycle and transcription in higher eukaryotes. We have determined the crystal structure of the transcription kinase Cdk13 and its Cyclin K subunit at 2.0 Å resolution.
View Article and Find Full Text PDFThe Cdk12/CycK complex promotes expression of a subset of RNA polymerase II genes, including those of the DNA damage response. CDK12 is among only nine genes with recurrent somatic mutations in high-grade serous ovarian carcinoma. However, the influence of these mutations on the Cdk12/CycK complex and their link to cancerogenesis remain ill-defined.
View Article and Find Full Text PDFThe bromodomain protein Brd4 regulates the transcription of signal-inducible genes. This is achieved by recruiting the positive transcription elongation factor P-TEFb to promoters by its P-TEFb interaction domain (PID). Here we show that Brd4 stimulates the kinase activity of P-TEFb for phosphorylation of the C-terminal domain (CTD) of RNA polymerase II over basal levels.
View Article and Find Full Text PDFPhosphorylation of the RNA polymerase II C-terminal domain (CTD) by cyclin-dependent kinases is important for productive transcription. Here we determine the crystal structure of Cdk12/CycK and analyse its requirements for substrate recognition. Active Cdk12/CycK is arranged in an open conformation similar to that of Cdk9/CycT but different from those of cell cycle kinases.
View Article and Find Full Text PDFPhosphorylation of RNA polymerase II carboxy-terminal domain (CTD) in hepta-repeats YSPTSPS regulates eukaryotic transcription. Whereas Ser5 is phosphorylated in the initiation phase, Ser2 phosphorylation marks the elongation state. Here we show that the positive transcription elongation factor P-TEFb is a Ser5 CTD kinase that is unable to create Ser2/Ser5 double phosphorylations, while it exhibits fourfold higher activity on a CTD substrate pre-phosphorylated at Ser7 compared with the consensus hepta-repeat or the YSPTSPK variant.
View Article and Find Full Text PDF