In recent years, major advances have been made in the understanding of the cellular and molecular mechanisms driving pulmonary vascular remodelling in various forms of pulmonary hypertension, including pulmonary arterial hypertension, pulmonary hypertension associated with left heart disease, pulmonary hypertension associated with chronic lung disease and hypoxia, and chronic thromboembolic pulmonary hypertension. However, the survival rates for these different forms of pulmonary hypertension remain unsatisfactory, underscoring the crucial need to more effectively translate innovative scientific knowledge into healthcare interventions. In these proceedings of the 7th World Symposium on Pulmonary Hypertension, we delve into recent developments in the field of pathology and pathophysiology, prioritising them while questioning their relevance to different subsets of pulmonary hypertension.
View Article and Find Full Text PDFPulmonary hypertension (PH) continues to present significant challenges to the medical community, both in terms of diagnosis and treatment. The advent of the updated 2022 European Society of Cardiology (ESC) and European Respiratory Society (ERS) guidelines has introduced pivotal changes that reflect the rapidly advancing understanding of this complex disease. These changes include a revised definition of PH, updates to the classification system, and treatment algorithm.
View Article and Find Full Text PDFEur Respir Rev
July 2024
Introduction: Pulmonary arterial hypertension (PAH) and chronic thromboembolic pulmonary hypertension (CTEPH) are life-threatening conditions that can progress to death without treatment. Although strong medication adherence (MA) is known to enhance outcomes in chronic illnesses, its association with PAH and CTEPH was sporadically explored. This study aims to examine the MA of patients with PAH or CTEPH, identify factors associated with low adherence and explore the resulting outcomes.
View Article and Find Full Text PDFHepatopulmonary syndrome (HPS) is a severe complication of liver diseases characterized by abnormal dilation of pulmonary vessels, resulting in impaired oxygenation. Recent research highlights the pivotal role of liver-produced BMP-9 (bone morphogenetic protein-9) in maintaining pulmonary vascular integrity. This study aimed to investigate the involvement of BMP-9 in human and experimental HPS.
View Article and Find Full Text PDF