Publications by authors named "C Gubry-Rangin"

Biological nitrification inhibition (BNI) refers to the plant-mediated process in which nitrification is inhibited through rhizospheric release of diverse metabolites. While it has been assumed that interactive effects of these metabolites shape rhizosphere processes, including BNI, there is scant evidence supporting this claim. Hence, it was a primary objective to assess the interactive effects of selected metabolites, including caffeic acid (CA), vanillic acid (VA), vanillin (VAN), syringic acid (SA), and phenylalanine (PHE), applied as single and combined compounds, against pure cultures of various ammonia-oxidising bacteria (AOB, Nitrosomonas europaea, Nitrosospira multiformis, Nitrosospira tenuis, Nitrosospira briensis) and archaea (AOA, Nitrososphaera viennensis), as well as soil nitrification.

View Article and Find Full Text PDF

The soil microbiome determines the fate of plant-fixed carbon. The shifts in soil properties caused by land use change leads to modifications in microbiome function, resulting in either loss or gain of soil organic carbon (SOC). Soil pH is the primary factor regulating microbiome characteristics leading to distinct pathways of microbial carbon cycling, but the underlying mechanisms remain understudied.

View Article and Find Full Text PDF
Article Synopsis
  • Two new strains of ammonia-oxidising archaea were isolated from acidic soils in the UK and China, showing over 99% genetic similarity but distinct physiological features.
  • Both strains, Nd1 and Nd2, are non-motile chemolithotrophs that oxidize ammonia to gain energy, but cannot use urea as an ammonia source.
  • The strains were classified into a new genus, with Nd1 and Nd2 designated as type strains for new species, alongside the proposal of a new family and order.
View Article and Find Full Text PDF
Article Synopsis
  • Biological Nitrification Inhibition (BNI) is a process where plants release metabolites to hinder nitrifying microbes, and intermediate wheatgrass (Kernza®) exhibits potential BNI traits yet to be fully explored.
  • Researchers tested the presence of BNI metabolites in Kernza® compared to annual winter wheat using advanced analyses and bioassays with ammonia-oxidizing bacteria (AOB) and archaea (AOA).
  • The study found that Kernza® not only contained significant BNI metabolites that inhibited AOB and AOA growth but also that ammonia enrichment triggered further release of inhibitory phenolic compounds, showcasing its effectiveness in suppressing soil nitrification.
View Article and Find Full Text PDF

Nitrification is the dominant process for nitrous oxide (NO) production under aerobic conditions, but the relative contribution of the autotrophic nitrifiers (the ammonia-oxidising archaea (AOA), the ammonia-oxidising bacteria (AOB) and the comammox) to this process is still unclear in some soil types. This is particularly the case in paddy soils under different fertilization regimes. We investigated active nitrifiers and their contribution to nitrification and NO production in a range of unfertilized and fertilized paddy soils, using CO-DNA based stable isotope probing (SIP) technique combined with a series of specific nitrification inhibitors, including acetylene (CH), 3, 4-dimethylpyrazole phosphate (DMPP) and 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO).

View Article and Find Full Text PDF