Publications by authors named "C Gspan"

This work addresses aspects for the analysis of industrial relevant materials via transmission electron microscopy (TEM). The complex phase chemistry and structural diversity of these materials require several characterization techniques to be employed simultaneously; unfortunately, different characterization techniques often lack connection to yield a complete and consistent picture. This paper describes a continuous path, starting with the acquisition of 3D diffraction data - alongside classical high-resolution imaging techniques - and linking the structural characterization of hard metal industrial samples with energy-loss fine-structure simulations, quantitative electron energy-loss (EEL) and energy-dispersive X-ray (EDX) spectroscopy.

View Article and Find Full Text PDF

By the fabrication of periodically arranged nanomagnetic systems it is possible to engineer novel physical properties by realizing artificial lattice geometries that are not accessible via natural crystallization or chemical synthesis. This has been accomplished with great success in two dimensions in the fields of artificial spin ice and magnetic logic devices, to name just two. Although first proposals have been made to advance into three dimensions (3D), established nanofabrication pathways based on electron beam lithography have not been adapted to obtain free-form 3D nanostructures.

View Article and Find Full Text PDF

The synthesis and characterization of bismuth sulfide-cellulose nanocomposite thin films was explored. The films were prepared using organosoluble precursors, namely bismuth xanthates for BiS and trimethylsilyl cellulose (TMSC) for cellulose. Solutions of these precursors were spin coated onto solid substrates yielding homogeneous precursor films.

View Article and Find Full Text PDF

A new mechanism for twin nucleation in the eutectic Al-Si alloy with trace Sr impurities is proposed. Observations made by sub-angstrom resolution scanning transmission electron microscopy and X-ray probing proved the presence of <110> Sr columns located preferentially at twin boundaries. Density functional theory simulations indicate that Sr atoms bind in the Si lattice only along the <110> direction, with preferential positions at first and second nearest neighbors for interstitial and substitutional Sr, respectively.

View Article and Find Full Text PDF

Recently, focused electron beam-induced deposition has been employed to prepare functional magnetic nanostructures with potential in nanomagnetic logic and sensing applications by using homonuclear precursor gases like Fe(CO)5 or Co2(CO)8. Here we show that an extension towards the fabrication of bi-metallic compounds is possible by using a single-source heteronuclear precursor gas. We have grown CoFe alloy magnetic nanostructures from the HFeCo3(CO)12 metal carbonyl precursor.

View Article and Find Full Text PDF