Publications by authors named "C Grygiel"

The widespread adoption of gGaN in radiation-hard semiconductor devices relies on a comprehensive understanding of its response to strongly ionizing radiation. Despite being widely acclaimed for its high radiation resistance, the exact effects induced by ionization are still hard to predict due to the complex phase-transition diagrams and defect creation-annihilation dynamics associated with group-III nitrides. Here, the Two-Temperature Model, Molecular Dynamics simulations and Transmission Electron Microscopy, are employed to study the interaction of Swift Heavy Ions with GaN at the atomic level.

View Article and Find Full Text PDF

350 nm and 550 nm thick InGaN/GaN bilayers were irradiated with different energies (from ∼82 to ∼38 MeV) of xenon (Xe) ions and different fluences of 1.2 GeV lead (Pb) ions, respectively. The radiation effects of the swift heavy ions' (SHIs) bombardment were investigated using Rutherford Backscattering Spectrometry in Channeling mode (RBS/C), X-Ray Diffraction (XRD), and micro-Raman spectroscopy.

View Article and Find Full Text PDF

High resolution AFM imaging of swift heavy ion irradiated muscovite mica under grazing incidence provides detailed insight into the created nanostructure features. Swift heavy ions under grazing incidence form a complex track structure along the surface, which consists of a double track of nanohillocks at the impact site accompanied by a single, several 100 nm long protrusion. Detailed track studies by varying the irradiation parameters, i.

View Article and Find Full Text PDF

An innovative experimental setup, PELIICAEN, allowing the modification of materials and the study of the effects induced by multiply charged ion beams at the nanoscale is presented. This ultra-high vacuum (below 5 × 10 mbar) apparatus is equipped with a focused ion beam column using multiply charged ions and a scanning electron microscope developed by Orsay Physics, as well as a scanning probe microscope. The dual beam approach coupled to the scanning probe microscope achieves nanometer scale in situ topological analysis of the surface modifications induced by the ion beams.

View Article and Find Full Text PDF

A novel form of ion-tracks, namely nanogrooves and hillocks, are observed on CaF2 after irradiation with xenon and lead ions of about 100 MeV kinetic energy. The irradiation is performed under grazing incidence (0.3°-3°) which forces the track to a region in close vicinity to the surface.

View Article and Find Full Text PDF