Retinopathy of prematurity (ROP) and diabetic retinopathy (DR) are ocular disorders in which a loss of retinal vasculature leads to ischemia followed by a compensatory neovascularization response. In mice, this is modeled using oxygen-induced retinopathy (OIR), whereby neonatal animals are transiently housed under hyperoxic conditions that result in central retina vessel regression and subsequent neovascularization. Using endothelial cell (EC)-specific gene deletion, we found that loss of two ETS-family transcription factors, ERG and FLI1, led to regression of OIR-induced neovascular vessels but failed to improve visual function, suggesting that relevant retinal damage occurs prior to and independently of neovascularization.
View Article and Find Full Text PDFUnderstanding the factors driving infection prevalence among host species is crucial for effective disease mitigation. Angiostrongylus cantonensis, the rat lungworm, causes neuroangiostrongyliasis and serves as an excellent model for studying infection dynamics across hosts. This study investigates the relative impact of encounter rates on A.
View Article and Find Full Text PDFStable ^{205}Tl ions have the lowest known energy threshold for capturing electron neutrinos (ν_{e}) of E_{ν_{e}}≥50.6 keV. The Lorandite Experiment (LOREX), proposed in the 1980s, aims at obtaining the longtime averaged solar neutrino flux by utilizing natural deposits of Tl-bearing lorandite ores.
View Article and Find Full Text PDFRecent studies have revealed a link between endothelial receptor-interacting protein kinase 3 (RIPK3) and vascular integrity. During mouse embryonic development, hypoxia can trigger elevated endothelial RIPK3 that contributes to lethal vascular rupture. However, it is unknown whether RIPK3 regulate endothelial barrier function in adult vasculature under hypoxic injury conditions such as ischemia-reperfusion (I/R) injury.
View Article and Find Full Text PDF