Publications by authors named "C Grauby-Heywang"

Predicting the initial steps of bacterial biofilm formation remains a significant challenge accross various fields, such as medical and industrial ones. Here we present a straightforward 3D theoretical model based on thermodynamic rules to assess the early stages of biofilm formation on different material surfaces. This model relying also on morphological aspects of bacteria, we used Atomic Force Microscopy images of two Gram negative bacteria, Pseudomonas fluorescens and Escherichia coli to determine their dimensions and geometries as single cells or in aggregated states.

View Article and Find Full Text PDF

Atomic force microscopy (AFM) was used to study the interfacial rheology of air/water interfaces by investigating the thermal capillary fluctuations of surfactant-loaded interfaces. These interfaces are formed by depositing an air bubble on a solid substrate immersed in a surfactant (Triton X-100) solution. An AFM cantilever, in contact with the north pole of the bubble, probes its thermal fluctuations (amplitude of the vibration versus the frequency).

View Article and Find Full Text PDF

This work is dedicated to the characterization by Atomic Force Microscopy (AFM) of , bacteria having high potential in biotechnology. They were first studied first in optimal conditions in terms of culture medium and temperature. AFM revealed a more-or-less elongated morphology with typical dimensions in the micrometer range, and an organization of the outer membrane characterized by the presence of long and randomly distributed ripples, which are likely related to the organization of lipopolysaccharides (LPS).

View Article and Find Full Text PDF

Cellular membrane is one of the main targets of photodynamic therapy. Its high complexity has led to the study of the efficiency of photosensitizers on artificial lipid systems mimicking membranes. However, the preliminary analysis of this efficiency remains limited due to difficulty of the model construction and/or implementation of the required measurement techniques.

View Article and Find Full Text PDF