Publications by authors named "C Goux-Henry"

Whereas l-3-oxo-hexanoyl homoserine lactone (OHHL) is the active enantiomer of the of LuxR-regulated quorum sensing (QS) autoinducer, its d isomer is implicitly considered as inactive. The present work aims to clarify this l-specificity and investigate whether it extends to some analogues in the acyl homoserine lactone (AHL) family. For this purpose, OHHL and a series of AHL analogs were synthesized in racemic and enantiomerically pure d and l forms and their ability to induce or attenuate bioluminescence in the LuxR-dependent QS system was evaluated.

View Article and Find Full Text PDF

D-Glucosamine was successfully employed as a chiral auxiliary for the enantioselective synthesis of phosphine oxides. The influence of the anomeric position was also investigated and revealed the excellent ability of the α-anomer to perform this transformation in a highly selective fashion. The methodology employed consisted of three steps: diastereoselective formation of the oxazaphospholidine followed by subsequent selective cleavage of P-N and P-O bonds by reaction with two Grignard reagents.

View Article and Find Full Text PDF

In this proof of concept study, the advantageous properties of both H(2)O(2)/NaHCO(3)/imidazole/Mn(TPP)OAc oxidation system and MOPyrroNTf(2) ionic liquid have been combined under ultrasonic irradiation to give an exceptionally favorable environment for Mn(TPP)OAc catalyzed olefin oxidations. The results reveal the crucial role played by the ultrasonic irradiations that influence drastically the oxidation process. In MOPyrroNTf(2) and under ultrasonic irradiation, the mechanism probably involves an oxo-manganyl intermediate at the expense of the classical bicarbonate-activated peroxide route.

View Article and Find Full Text PDF

Herein, we report the manganese complex with a novel trianionic ligand, the pentafluorophenyldipyrrinphenol ligand DPPH(3). The X-ray crystal structure reveals that the Mn(III) complex exists in a dimeric form in the solid state. Electrochemical studies indicate two quasi-reversible one electron oxidation processes.

View Article and Find Full Text PDF