Frizzled receptors are components of the Wnt signalling pathway, but how they activate the canonical Wnt/beta-catenin pathway is not clear. Here we use three distinct vertebrate frizzled receptors (Xfz3, Xfz4 and Xfz7) and describe whether and how their C-terminal cytoplasmic regions transduce the Wnt/beta-catenin signal. We show that Xfz3 activates this pathway in the absence of exogenous ligands, while Xfz4 and Xfz7 interact with Xwnt5A to activate this pathway.
View Article and Find Full Text PDFCyclin-dependent kinases (CDKs) are a family of serine/threonine protein kinases which play a pivotal role in the eucaryote cell cycle regulation. We have identified the Xenopus homologue of mammalian CDK4 (XCDK4). The protein sequence of XCDK4 has 78 and 77% overall identity to human and mouse CDK4, respectively.
View Article and Find Full Text PDFRecent advances in analyzing wnt signaling have provided evidence that frizzled proteins can function as wnt receptors. We have identified Xfz3, a Xenopus frizzled family member. The amino acid sequence is 89% identical to the product of the murine gene Mfz3, and is predicted to be a serpentine receptor with seven transmembrane domains.
View Article and Find Full Text PDF