Thyroid hormones play a critical role in development and functioning of the nervous system. Deiodinases (type 2 [D2] and type 3 [D3]) contribute to the control of thyroid hormone action in the nervous system by regulating the local concentrations of triiodothyronine (T(3)), the main active thyroid hormone. Most brain T(3) is indeed locally formed by deiodination of thyroxine (T(4)).
View Article and Find Full Text PDFThis study investigated the expression of deiodinases of thyroid hormones in the rat brain after transient occlusion of the middle cerebral artery. The activity of type 2 deiodinase (D2), which catalyzes the deiodination of thyroxine into the more active thyroid hormone 3,5,3'-triiodothyronine, was strongly increased by cerebral ischemia at 6 and 24 hours in the striatum and at 24 hours in the cerebral cortex. The activity of type 3 deiodinase, which catalyzes the inactivation of thyroid hormones, was not affected by ischemia.
View Article and Find Full Text PDFLesion of the sciatic nerve caused a rapid activation of p38MAP kinase in the injured nerve adjacent to the site of transection. This activation was detectable 3 min after lesioning, increased during the next 15 min and remained high for several hours. Erk1/2 activation was also observed as early as 15 min after lesioning.
View Article and Find Full Text PDFStudy of the multidrug resistance phenomenon in tumor cell lines has led to the discovery of the product of the multidrug resistance (MDR) type 1 genes, the plasma membrane P-glycoprotein (P-gp) that functions as an energy-dependent pump for the efflux of diverse anticancer drugs. P-gp was also recently identified in normal epithelial cells with secretory/excretory functions and in the endothelial cells of the capillary blood vessels in the brain and the testis. These endothelial cells are key elements of the blood-brain and blood-testis barriers, respectively.
View Article and Find Full Text PDFThyroid hormones are essential for the development and function of the brain and also for the maturation and repair of the peripheral nervous system. In the brain, most of the 3,5,3'-triiodothyronine is locally produced by 5'-deiodination of thyroxine catalyzed by the type 2 deiodinase. The absence of any information about thyroid hormone metabolism in the peripheral nervous system prompted us to study the expression of type 2 deiodinase (mRNA and activity) in the peripheral nervous system.
View Article and Find Full Text PDF