Unmodified cells undergo only a limited number of cell divisions until they enter a state termed cellular senescence. Other triggers like cytotoxic compounds can also induce cell senescence. Since cell senescence represents a major mechanism of tumor suppression this cellular state has attracted increasing attention.
View Article and Find Full Text PDFInvestigating metabolic changes during different organismal or cellular states is of increasing interest. The combination of a data-rich analytical method like mass spectrometry or NMR spectroscopy with a statistical analysis identifies metabolites that are affected by a certain stimulus. Thus, important information on the underlying molecular pathways can be obtained.
View Article and Find Full Text PDFMech Ageing Dev
March 2013
Cellular senescence is of growing interest due to its role in tumour suppression and its contribution to organismic ageing. This cellular state can be reached by replicative loss of telomeres or certain stresses in cell culture and is characterized by the termination of cell division; however, the cells remain metabolically active. To identify metabolites that are characteristic for senescent cells, extracts of human embryonic lung fibroblast (WI-38 cell line) have been investigated with NMR spectroscopy.
View Article and Find Full Text PDFWe developed a clonal WI-38hTERT/GFP-RAF1-ER immortal cell line to study RAF-induced senescence of human fibroblasts. Activation of the GFP-RAF1-ER kinase by addition of 4-hydroxy-tamoxifen led to a robust induction of senescence within one population doubling, accompanied by the assembly of heterochromatic foci. At least two pathways contribute in parallel to this senescence leading to the accumulation of p15, p16, p21 and p27 inhibitors of cyclin-dependent kinases (CKIs).
View Article and Find Full Text PDF