Publications by authors named "C Gaus"

Environmental contaminants pose serious health threats to marine megafauna species, yet methods defining exposure threshold limits are lacking. Here, a three-pillar chemical risk assessment framework is presented based on (1) species- and chemical-specific lifetime bioaccumulation modelling, (2) non-destructive in vitro and in vivo toxicity threshold assessment, and (3) chemical risk quantification. We used the effects of cadmium (Cd) in green sea turtles (Chelonia mydas) as a proof of concept to evaluate the quantitative mechanistic modelling approach.

View Article and Find Full Text PDF

Super-hydrophobic organic contaminants (SHOCs) such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs) and octachlorodibenzofuran (OCDF) can sorb to dissolved hydrophobic materials including humic acids (HAs), enhancing their apparent aqueous solubility and potentially resulting in increased groundwater contamination and offsite transport. To manage risks associated with transport of and contamination by SHOCs, modelling approaches incorporating partitioning data, i.e.

View Article and Find Full Text PDF

Surfactant mixtures are commonly used in agricultural and soil remediation applications, necessitating an understanding of their micellization behavior and associated impact on the fate of co-existing chemicals in the subsurface. A polymer-water sorption isotherm approach was shown to present an alternative to traditional methods for quantifying, understanding and predicting surfactant mixture properties. Micelle compositions were measured for anionic-nonionic surfactant mixtures.

View Article and Find Full Text PDF

Previous studies on PCDD/Fs and PCBs in dugong (Dugong dugon) blubber reported unexpectedly elevated TEQ levels. This study analysed archived blubber, muscle, liver and faeces obtained from dugongs from two areas along the Queensland coast. All samples showed detectable levels of PCDDs and PCBs, while PCDFs were consistently near or below LOQ.

View Article and Find Full Text PDF

Marine megafauna that forage in proximity to land can be exposed to a diverse mixture of chemicals that - individually or combined - have the potential to affect their health. Characterizing such complex exposure and examining associations with health still poses considerable challenges. The present study summarizes the development and application of novel approaches to identifying chemical hazards and their potential impacts on the health of coastal wildlife, using green sea turtles as model species.

View Article and Find Full Text PDF