Many neurodegenerative diseases feature misfolded proteins that propagate via templated conversion of natively folded molecules. However, crucial questions about how such prion-like conversion occurs and what drives it remain unsolved, partly because technical challenges have prevented direct observation of conversion for any protein. We observed prion-like conversion in single molecules of superoxide dismutase-1 (SOD1), whose misfolding is linked to amyotrophic lateral sclerosis.
View Article and Find Full Text PDFPrion diseases are fatal neurodegenerative diseases caused by pathogenic misfolding of the prion protein, PrP. They are transmissible between hosts, and sometimes between different species, as with transmission of bovine spongiform encephalopathy to humans. Although PrP is found in a wide range of vertebrates, prion diseases are seen only in certain mammals, suggesting that infectious misfolding was a recent evolutionary development.
View Article and Find Full Text PDFLight scattering has been used for label-free cell detection. The angular light scattering patterns from the cells are unique to them based on the cell size, nucleus size, number of mitochondria, and cell surface roughness. The patterns collected from the cells can then be classified based on different image characteristics.
View Article and Find Full Text PDFPrion and prion-like diseases involve the propagation of misfolded protein conformers. Small-molecule pharmacological chaperones can inhibit propagated misfolding, but how they interact with disease-related proteins to prevent misfolding is often unclear. We investigated how pentosan polysulfate (PPS), a polyanion with antiprion activity in vitro and in vivo, interacts with mammalian prion protein (PrP) to alter its folding.
View Article and Find Full Text PDFAggregation of the disordered protein α-synuclein into amyloid fibrils is a central feature of synucleinopathies, neurodegenerative disorders that include Parkinson's disease. Small, pre-fibrillar oligomers of misfolded α-synuclein are thought to be the key toxic entities, and α-synuclein misfolding can propagate in a prion-like way. We explored whether a compound with anti-prion activity that can bind to unfolded parts of the protein PrP, the cyclic tetrapyrrole Fe-TMPyP, was also active against α-synuclein aggregation.
View Article and Find Full Text PDF