A straightforward strategy toward the efficient synthesis of linear saturated polyamines containing 1,2-diaminoethane and/or 1,3-diaminopropane fragments has been developed. The procedure is based on the chemistry of 5- and 6-membered cyclic amidines, including their efficient synthesis from nitrile precursors and subsequent chemoselective reductive-opening by a borane-dimethyl sulfide complex. This two-step procedure provides a robust methodology for the synthesis of linear polyamine skeletons under nonharsh conditions and free of using selective protective groups or tedious workups.
View Article and Find Full Text PDFControlling graphene conductivity is crucial for its potential applications. With this focus, this paper shows the effect of the non-covalent bonding of a pyrimidine derivative (HIS) on the electronic properties of graphene (G). Several G-HIS hybrids are prepared through mild treatments keeping unaltered the structures of both G and HIS.
View Article and Find Full Text PDFFour molecules (L1-L4) constituted by an s-tetrazine ring appended with two identical aliphatic chains of increasing length bearing terminal morpholine groups were studied as anion receptors in water. The basicity properties of these molecules were also investigated. Speciation of the anion complexes formed in solution and determination of their stability constants were performed by means of potentiometric (pH-metric) titrations, while further information was obtained by NMR and isothermal titration calorimetry (ITC) measurements.
View Article and Find Full Text PDFThe formation of halide and hydroxide anion complexes with two ligands L1 (3,6-bis(morpholin-4-ylmethyl)-1,2,4,5-tetrazine) and L2 (3,6-bis(morpholin-4-ylethyl)-1,2,4,5-tetrazine) was studied in aqueous solution, by means of potentiometric and ITC procedures. In the solid state, HF, Cl and Br complexes of HL2 were analysed by single crystal XRD measurements. Further information on the latter was obtained with the use of density functional theory (DFT) calculations in combination with the polarizable continuum model (PCM).
View Article and Find Full Text PDFLigands L1 and L2, consisting of a tetrazine ring decorated with two morpholine pendants of different lengths, show peculiar anion-binding behaviors. In several cases, even the neutral ligands, in addition to their protonated HL(+) and H2L(2+) (L = L1 and L2) forms, bind anions such as F(-), NO3(-), PF6(-), ClO4(-), and SO4(2-) to form stable complexes in water. The crystal structures of H2L1(PF6)2·2H2O, H2L1(ClO4)2·2H2O, H2L2(NO3)2, H2L2(PF6)2·H2O, and H2L2(ClO4)2·H2O show that anion-π interactions are pivotal for the formation of these complexes, although other weak forces may contribute to their stability.
View Article and Find Full Text PDF