Artificial intelligence and machine learning enable the construction of predictive models, which are currently used to assist in decision-making throughout the process of drug discovery and development. These computational models can be used to represent the heterogeneity of a disease, identify therapeutic targets, design and optimize drug candidates, and evaluate the efficacy of these drugs on virtual patients or digital twins. By combining detailed patient characteristics with the prediction of potential drug-candidate properties, artificial intelligence promotes the emergence of a "computational" precision medicine, allowing for more personalized treatments, better tailored to patient specificities with the aid of such predictive models.
View Article and Find Full Text PDFBackground: Despite the improvement of relapse-free survival mediated by anti-angiogenic drugs like sunitinib (Sutent®), or by combinations of anti-angiogenic drugs with immunotherapy, metastatic clear cell Renal Cell Carcinoma (mccRCC) remain incurable. Hence, new relevant treatments are urgently needed. The VEGFs coreceptors, Neuropilins 1, 2 (NRP1, 2) are expressed on several tumor cells including ccRCC.
View Article and Find Full Text PDFHuman malignant glioblastoma (GBM) is a highly invasive and lethal brain tumor. Targeting of integrin downstream signaling mediators in GBM such as focal adhesion kinase (FAK) seems reasonable and recently demonstrated promising results in early clinical studies. Herein, we report the structure-guided development of a series of covalent inhibitors of FAK.
View Article and Find Full Text PDFWe report herein the synthesis of a newly described anti-cancer agent, NRPa-308. This compound antagonizes Neuropilin-1, a multi-partners transmembrane receptor overexpressed in numerous tumors, and thereby validated as promising target in oncology. The preparation of NRPa-308 proved challenging because of the orthogonality of the amide and sulphonamide bonds formation.
View Article and Find Full Text PDF-carbamoyl putrescine (NCP), the decarboxylation derivative of citrulline, metabolically related to polyamines, may exert biological effects in mammals. The aim of this study was (i) to evaluate the nutritional properties of NCP in healthy rats and (ii) to determine the effect of NCP administration on muscle metabolism in malnourished old rats. The nutritional properties of NCP were first evaluated in 20 8-week-old male rats randomized to receive for two weeks a standard diet either alone (C group) or supplemented with NCP, 5 or 50 mg/kg/d.
View Article and Find Full Text PDF