Local adaptations are important in evolution as they drive population divergence and preserve standing genetic diversity essential for resilience under climate change and human impacts. Protecting locally adapted populations is essential for aquaculture species. However, high larval connectivity and frequent translocations challenge this in Chilean blue mussel () aquaculture, a world-class industry in Chiloé Island.
View Article and Find Full Text PDFThe production and release of cortisol during stress responses are key regulators of growth in teleosts. Understanding the molecular responses to cortisol is crucial for the sustainable farming of rainbow trout () and other salmonid species. While several studies have explored the genomic and non-genomic impacts of cortisol on fish growth and skeletal muscle development, the long-term effects driven by epigenetic mechanisms, such as cortisol-induced DNA methylation, remain unexplored.
View Article and Find Full Text PDFThe increase in hypoxia events, a result of climate change in coastal and fjord ecosystems, impacts the health and survival of mussels. These organisms deploy physiological and molecular responses as an adaptive mechanism to maintain cellular homeostasis under environmental stress. However, the specific effects of hypoxia on mussels of socioeconomic interest, such as , are unknown.
View Article and Find Full Text PDFThe fish's immune response is affected by different factors, including a wide range of environmental conditions that can also disrupt or promote changes in the host-pathogen interactions. How environmental conditions modulate the salmon genome during parasitism is poorly understood here. This study aimed to explore the environmental influence on the Salmo salar transcriptome and methylome infected with the sea louse Caligus rogercresseyi.
View Article and Find Full Text PDFBackground: Disseminated neoplasia (DN) is a proliferative cell disorder of the circulatory system of bivalve mollusks. The disease is transmitted between individuals and can also be induced by external chemical agents such as bromodeoxyuridine. In Mya arenaria, we have cloned and characterized an LTR-retrotransposon named Steamer.
View Article and Find Full Text PDF