Hypothesis: Oppositely charged proteins should interact and form complex coacervates or precipitates at the correct mixing ratios and under defined pH conditions.
Experiments: The cationic protein lactotransferrin (LF) was mixed with the anionic protein β-lactoglobulin (B-Lg) at a range of pH and mixing ratios. Complexation was monitored through turbidity and zeta potential measurements.
Lactotransferrin (LF) is a large globular protein in milk with immune-regulatory and bactericidal properties. At pH 6.5, LF (M = 78 kDa) carries a net (calculated) charge of +21.
View Article and Find Full Text PDFCasein micelles with bound lactoferrin or lysozyme were fractionated into sizes ranging in radius from ∼50 to 100 nm. The κ-casein content decreased markedly and the αS-casein/β-casein content increased slightly as micelle size increased. For lactoferrin, higher levels were bound to smaller micelles.
View Article and Find Full Text PDFComplexes are formed when positively charged lysozyme (LYZ) is mixed with negatively charged caseins. Adding β-casein (BCN) to LYZ leads to flocculation even at low addition levels. Titrating LYZ into BCN shows that complexes are formed up to a critical composition (x=[LYZ]/([LYZ]+[BCN]).
View Article and Find Full Text PDF