Publications by authors named "C G Broustas"

High-dose radiation exposure results in gastrointestinal (GI) acute radiation syndrome identified by the destruction of mucosal layer, intestinal epithelial barrier dysfunction, and aberrant inflammatory responses. In addition, radiation causes gut microbiome dysbiosis characterized by diminished microbial diversity, reduction in the abundance of beneficial commensal bacteria, and the spread of bacterial pathogens that trigger the recruitment of immune cells and the production of pro-inflammatory factors that lead to further GI tissue damage. Currently, there are no FDA-approved countermeasures that can treat radiation-induced GI injury.

View Article and Find Full Text PDF

After a large-scale radiological or nuclear event, hundreds of thousands of people may be exposed to ionizing radiation and require subsequent medical management. Acute exposure to moderate doses (2-6 Gy) of radiation can lead to the hematopoietic acute radiation syndrome, in which the bone marrow (BM) is severely compromised, and severe hemorrhage and infection are common. Previously, we have developed a panel of intracellular protein markers (FDXR, ACTN1, DDB2, BAX, p53 and TSPYL2), designed to reconstruct absorbed radiation dose from human peripheral blood (PB) leukocyte samples in humanized mice up to 3 days after exposure.

View Article and Find Full Text PDF
Article Synopsis
  • High-dose radiation exposure results in severe health consequences, including radiation syndromes with acute and long-term organ damage, leading to increased morbidity and mortality in affected individuals.
  • Radiation biodosimetry using gene expression analysis in blood samples can effectively detect radiation exposure and predict potential injuries, but factors like chronic inflammation can complicate these predictions.
  • A study on GADD45A-deficient mice showed that their pre-existing inflammation affects radiation biodosimetry, revealing that these mice exhibited more severe effects from radiation exposure, indicating a link between GADD45A and enhanced radiation sensitivity.
View Article and Find Full Text PDF

Blood-based gene expression profiles that can reconstruct radiation exposure are being developed as a practical approach to radiation biodosimetry. However, age and sex could potentially limit the accuracy of the approach. In this study, we determined the impact of age on the peripheral blood cell gene expression profile of female mice exposed to radiation and identified differences and similarities with a previously obtained transcriptomic signature of male mice.

View Article and Find Full Text PDF

Radiation biodosimetry based on transcriptomic analysis of peripheral blood is a valuable tool to detect radiation exposure after a radiological/nuclear event and obtain useful biological information that could predict tissue and organismal injury. However, confounding factors, including chronic inflammation or immune suppression, can potentially obscure the predictive power of the method. Members of the p38 mitogen-activated protein kinase (MAPK) family respond to pro-inflammatory signals and environmental stresses, whereas genetic ablation of the p38 signaling pathway in mice leads to reduced susceptibility to collagen-induced arthritis and experimental autoimmune encephalomyelitis that model human rheumatoid arthritis and multiple sclerosis, respectively.

View Article and Find Full Text PDF