Cytokines of the common γ-chain receptor family such as IL-15 are vital with respect to activating immune cells, sustaining healthy immune functions, and augmenting the anti-tumor activity of effector cells, making them ideal candidates for cancer immunotherapy. IL-15, either in its soluble form (IL-15sol) or complexed with IL-15Rα (IL-15Rc), has been shown to exhibit potent anti-tumor activities in various experimental cancer studies. Here we describe the impact of intraperitoneal IL-15 in a cancer cell-delivered IL-15 immunotherapy approach using the 70Z/3-L leukemia mouse model.
View Article and Find Full Text PDFB cell development is regulated by stromal cells (SCs) that form a supportive microenvironment. These SCs along with other cell types produce cytokines, chemokines, and adhesion molecules that guide B cell commitment and differentiation. BM, spleen (Sp), and the gut lamina propria (LP) constitute distinctive anatomical compartments that support B cell differentiation.
View Article and Find Full Text PDFImmature B cells are the first B cell progenitors to express a fully formed B cell receptor and are therefore subject to extensive selection processes that act to mitigate the emergence of autoreactive clones. While it is well appreciated that most B cell generation in the bone marrow is highly dependent on access to molecules present in the local milieu, the existence of extrinsically provided factors that modulate immature B cell biology is ambiguous. Nonetheless, a population of CD49b+CD90lo cells has demonstrated in vitro potential to promote immature B cell survival.
View Article and Find Full Text PDFGrowing cancers are known to modify immune responses through suppressive mechanisms manifested within the local tumor microenvironment. Accumulating evidence indicates that secreted tumor products can also influence on distant immunological compartments, including myelopoiesis in the bone marrow. However, it is unknown if a similar effect can occur to regulate B-cell lymphopoiesis in breast cancer.
View Article and Find Full Text PDFSystemic inflammation perturbs the bone marrow environment by evicting resident B cells and favoring granulopoiesis over lymphopoiesis. Despite these conditions, a subset of marrow B cell remains to become activated and produce potent acute immunoglobulin M (IgM) responses. This discrepancy is currently unresolved and a complete characterization of early perturbations in the B-cell niche has not been undertaken.
View Article and Find Full Text PDF