We have investigated whether the nonpathogenic gram-positive bacteria Staphylococcus xylosus and S. carnosus can display a whole domain of a toxic protein on their surface and if such vectors are suitable for immunization of BALB/c mice. The nucleotide sequence encoding the receptor-binding domain (DTR; amino acids 382 to 535) of diphtheria toxin (DT) was inserted into plasmids pSE'mp18ABPXM and pSPPmABPXM, which were designed to display heterologous proteins on S.
View Article and Find Full Text PDFCuraremimetic toxins are typical non-enzymatic toxins that bind to their target [the nicotinic acetylcholine receptor (AChR)] through multiple residues. Nevertheless, we show that the concomitant substitutions of only three of the ten functionally important residues of such a toxin sufficed to cause an affinity decrease of the toxin for AChR that is higher than four orders of magnitude. Despite these triple mutations, the overall conformation of the mutated protein remains similar to that of a related recombinant toxin, as judged from both circular dichroism analysis and investigation of antigenicity, using monoclonal and polyclonal antibodies.
View Article and Find Full Text PDFTwo recombinant fragments of diphtheria toxin (DT) were fused to an engineered tandem repeat of the immunoglobulin (Ig) binding domain of protein A, called ZZ. These fragments are (i) the receptor binding domain (DTR), which comprises amino acids 382 to 535 of DT, and (ii) a linear peptide (DT(168-220)) which comprises residues 168 to 220 of the loop between fragment A and fragment B of DT. The fusion proteins were produced in Escherichia coli and purified by affinity chromatography.
View Article and Find Full Text PDFIn several instances, a monoclonal antibody raised against a receptor ligand has been claimed to mimic the ligand receptor. Thus, a specific monoclonal antibody (Malpha2-3) raised against a short-chain toxin from snake was proposed to mimic the nicotinic acetylcholine receptor (AChR) (). Further confirming this mimicry, we show that (i) like AChR, Malpha2-3 elicits anti-AChR antibodies, which in turn elicit anti-toxin antibodies; and (ii) the region 106-122 of the alpha-chain of AChR shares 66% primary structure identity with complementarity-determining regions of Malpha2-3.
View Article and Find Full Text PDF