Magnetron sputtering is a versatile method for investigating model system catalysts thanks to its simplicity, reproducibility, and chemical-free synthesis process. It has recently emerged as a promising technique for synthesizing δ-NiGa thin films. Physically deposited thin films have significant potential to clarify certain aspects of catalysts by eliminating parameters such as particle size dependence, metal-support interactions, and the presence of surface ligands.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2024
Cysteine cathepsins such as cathepsin B and L play an important role in numerous diseases like acute pancreatitis or SARS-CoV-2 and therefore have high potential for the development of new therapeutics. To be able to screen for potent and selective inhibitors sufficient amounts of protein are required. Here, we present an easy and efficient protocol for the recombinant expression of soluble and active murine cathepsin B and L.
View Article and Find Full Text PDFObjectives: Extravascular lung water precedes deterioration of pulmonary function. Current tools to assess extravascular lung water in a setting of donor lung procurement and ex vivo lung perfusion (EVLP) are either subjective or not feasible. Therefore, a direCt Lung Ultrasound Evaluation (CLUE) has been introduced.
View Article and Find Full Text PDFSingle cell RNA sequencing has provided unprecedented insights into the molecular cues and cellular heterogeneity underlying human disease. However, the high costs and complexity of single cell methods remain a major obstacle for generating large-scale human cohorts. Here, we compare current state-of-the-art single cell multiplexing technologies, and provide a widely applicable demultiplexing method, SoupLadle, that enables simple, yet robust high-throughput multiplexing leveraging genetic variability of patients.
View Article and Find Full Text PDFTo fully utilize the potential of CRISPR-Cas9-mediated genome editing, time-restricted and targeted delivery is crucial. By modulating the pseudotype of engineered lentivirus-derived nanoparticles (LVNPs), we demonstrate efficient cell-targeted delivery of Cas9/single guide RNA (sgRNA) ribonucleoprotein (RNP) complexes, supporting gene modification in a defined subset of cells in mixed cell populations. LVNPs pseudotyped with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein resulted in angiotensin-converting enzyme 2 (ACE2)-dependent insertion or deletion (indel) formation in an ACE2/ACE2 population of cells, whereas Nipah virus glycoprotein pseudotyping resulted in Ephrin-B2/B3-specific gene knockout.
View Article and Find Full Text PDF