High-quality, 3D-shaped, SiO colloidal photonic crystals (ellipsoids, hyperboloids, and others) were fabricated by self-assembly. They possess a quadratic surface and are wide-angle-independent, direction-dependent, diffractive reflection crystals. Their size varies between 1 and 5 mm and can be achieved as mechanical-resistant, free-standing, thick (hundreds of ordered layers) objects.
View Article and Find Full Text PDFHigh-quality convex colloidal photonic crystals can be grown on the tip of an optical fiber by self-assembly using the hanging drop method. They are convex-shaped, produce the diffraction of reflecting light with high efficiency (blazing colors), and have a high curvature. The convex colloidal crystals are easily detachable and, as free-standing objects, they are mechanically robust, allowing their manipulation and use as convex reflective diffraction devices in imaging spectrometers.
View Article and Find Full Text PDFTiO nanoparticles were synthesized by laser pyrolysis from TiCl vapor in air in the presence of ethylene as sensitizer at different working pressures (250-850 mbar) with and without further calcination at 450 °C. The obtained powders were analyzed by energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffractometry, and transmission electron microscopy. Also, specific surface area and photoluminescence with optical absorbance were evaluated.
View Article and Find Full Text PDFSilica and polystyrene spheres with a small size ratio (r = 0.005) form by sequential hanging drop self-assembly, a binary colloidal crystal through which calcination transforms in a silica-ordered concavity array. These arrays are capable of light Bragg diffraction and shape dependent optical phenomena, and they can be transformed into inverse-opal structures.
View Article and Find Full Text PDFIn the current paper, a new hybrid nanofluid based on graphene oxide sheets and silicon nanoparticles is proposed for thermal applications. GO sheets and Si nanoparticles with different mixture ratios are dispersed in distilled water. Dynamic viscosity is measured at temperatures within the range 20-50 °C and the values are compared to the results available in the literature.
View Article and Find Full Text PDF