Superconducting microwave resonators are crucial elements of microwave circuits, offering a wide range of potential applications in modern science and technology. While conventional low-T[Formula: see text] superconductors are mainly employed, high-T[Formula: see text] cuprates could offer enhanced temperature and magnetic field operating ranges. Here, we report the realization of [Formula: see text] superconducting coplanar waveguide resonators, and demonstrate a continuous evolution from a lossy undercoupled regime, to a lossless overcoupled regime by adjusting the device geometry, in good agreement with circuit model theory.
View Article and Find Full Text PDFWhile HgTe nanocrystals (NCs) in the mid-infrared region have reached a high level of maturity, their far-infrared counterparts remain far less studied, raising the need for an in-depth investigation of the material before efficient device integration can be considered. Here, we explore the effect of temperature and pressure on the structural, spectroscopic, and transport properties of HgTe NCs displaying an intraband absorption at 10 THz. The temperature leads to a very weak modulation of the spectrum as opposed to what was observed for strongly confined HgTe NCs.
View Article and Find Full Text PDFThe Josephson effect results from the coupling of two superconductors across a spacer such as an insulator, a normal metal or a ferromagnet to yield a phase coherent quantum state. However, in junctions with ferromagnetic spacers, very long-range Josephson effects have remained elusive. Here we demonstrate extremely long-range (micrometric) high-temperature (tens of kelvins) Josephson coupling across the half-metallic manganite LaSrMnO combined with the superconducting cuprate YBaCuO.
View Article and Find Full Text PDFThe Josephson junction (JJ) is the corner stone of superconducting electronics and quantum information processing. While the technology for fabricating low T JJ is mature and delivers quantum circuits able to reach the "quantum supremacy", the fabrication of reproducible and low-noise high-T JJ is still a challenge to be taken up. Here we report on noise properties at RF frequencies of recently introduced high-T Josephson nano-junctions fabricated by mean of a Helium ion beam focused at sub-nanometer scale on a YBaCuO thin film.
View Article and Find Full Text PDF