Lipids of different unsaturation degree were added to dairy ewe diet to test the hypothesis that unsaturated oils would modulate milk fatty acid (FA) profile without impairing or even improving feed efficiency. To this aim, we examined milk FA profile and efficiency metrics (feed conversion ratio (FCR), energy conversion ratio (ECR), residual feed intake (RFI), and residual energy intake (REI)) in 40 lactating ewes fed a diet with no lipid supplementation (Control) or supplemented with 3 fats rich in saturated, monounsaturated and polyunsaturated FA (i.e.
View Article and Find Full Text PDFA sustainable increase in livestock production would require selection for improved feed efficiency, but the mechanisms underlying this trait and explaining its large individual variation in dairy ruminants remain unclear. This study was conducted in lactating ewes to test the hypothesis that rumen biohydrogenation (BH) would differ between high- and low-efficiency animals, and these differences would be reflected in rumen fatty acid (FA) profile and affect milk FA composition. A second aim was to identify differences in FA that may serve as biomarkers of feed efficiency.
View Article and Find Full Text PDFExposure to bisphenol A (BPA) has been related to male reproductive disorders. Since this endocrine disruptor also displays genotoxic and epigenotoxic effects, it likely alters the spermatogenesis, a process in which both hormones and chromatin remodeling play crucial roles. The hypothesis of this work is that BPA impairs early embryo development by modifying the spermatic genetic and epigenetic information.
View Article and Find Full Text PDFThe sperm nucleus is prone to sustain DNA damage before and after ejaculation. Distribution of the damage is not homogeneous, and the factors determining differential sensitivity among nuclear regions have not yet been characterized. Human sperm chromatin contains three structural domains, two of which are considered the most susceptible to DNA damage: the histone bound domain, harboring developmental related genes, and the domain associated with nuclear matrix proteins.
View Article and Find Full Text PDFExposure to the emerging contaminant bisphenol A (BPA) is ubiquitous and associated with cardiovascular disorders. BPA effect as endocrine disruptor is widely known but other mechanisms underlying heart disease, such as epigenetic modifications, remain still unclear. A compound of green tea, epigallocatechin gallate (EGCG), may act both as anti-estrogen and as inhibitor of some epigenetic enzymes.
View Article and Find Full Text PDF