Hypothalamic Kiss1 neurons control gonadotropin-releasing hormone release through the secretion of kisspeptin. Kiss1 neurons serve as a nodal center that conveys essential regulatory cues for the attainment and maintenance of reproductive function. Despite this critical role, the mechanisms that control kisspeptin synthesis and release remain largely unknown.
View Article and Find Full Text PDFMechanisms in the brain controlling secretion of gonadotropin hormones in pigs, particularly luteinizing hormone (LH), are poorly understood. Kisspeptin is a potent LH stimulant that is essential for fertility in many species, including pigs. Neurokinin B (NKB) acting through neurokinin 3 receptor (NK3R) is involved in kisspeptin-stimulated LH release, but organization of NKB and NK3R within the porcine hypothalamus is unknown.
View Article and Find Full Text PDFLogistics sustainability is increasingly becoming a central focus of businesses, when most societies are aware of the influence of industry on both the environment and human health. To address the drawbacks of the way logistics systems have been designed, a new logistics system called Physical Internet has been proposed. This system relies on the creation of hyperconnected logistics systems.
View Article and Find Full Text PDFTachykinins (neurokinin A [NKA], neurokinin B [NKB], and substance P [SP]) are important components of the neuroendocrine control of reproduction by direct stimulation of Kiss1 neurons to control GnRH pulsatility, which is essential for reproduction. Despite this role of tachykinins in successful reproduction, knockout (KO) mice for Tac1 (NKA/SP) and Tac2 (NKB) genes are fertile, resembling the phenotype of human patients bearing NKB signaling mutations, who often reverse their hypogonadal phenotype. This suggests the existence of compensatory mechanisms among the different tachykinin ligand-receptor systems to maintain reproduction in the absence of one of them.
View Article and Find Full Text PDFThe tachykinin neurokinin B (NKB, Tac2) is critical for proper GnRH release in mammals, however, the role of the other tachykinins, such as substance P (SP) and neurokinin A (NKA) in reproduction, is still not well understood. In this study, we demonstrate that NKA controls the timing of puberty onset (similar to NKB and SP) and stimulates LH release in adulthood through NKB-independent (but kisspeptin-dependent) mechanisms in the presence of sex steroids. Furthermore, this is achieved, at least in part, through the autosynaptic activation of Tac1 neurons, which express NK2R (Tacr2), the receptor for NKA.
View Article and Find Full Text PDF