Publications by authors named "C Fasching"

Despite their relatively large size, Icelandic glaciers, and their organic carbon (OC) fluxes, have not been explicitly considered in current global glacial OC flux calculations. Most global glacial OC estimates are based on limited individual flux estimates, often determined during the melt season, rarely accounting for the seasonal and diurnal variability of glacial dissolved organic matter (DOM). Using an annual dataset of 25 Icelandic glaciers (and their glacial streams) we investigate DOM concentration and composition, calculating an estimate for downstream OC fluxes from Icelandic glaciers, considering diurnal and seasonal variability.

View Article and Find Full Text PDF

Laboratory tests for the accurate and rapid identification of SARS-CoV-2 variants can potentially guide the treatment of COVID-19 patients and inform infection control and public health surveillance efforts. Here, we present the development and validation of a rapid COVID-19 variant DETECTR assay incorporating loop-mediated isothermal amplification (LAMP) followed by CRISPR-Cas12 based identification of single nucleotide polymorphism (SNP) mutations in the SARS-CoV-2 spike (S) gene. This assay targets the L452R, E484K/Q/A, and N501Y mutations, at least one of which is found in nearly all major variants.

View Article and Find Full Text PDF

In aquatic ecosystems, dissolved organic matter (DOM) composition is driven by land use, microbial activity, and seasonal variation in hydrology and water temperature, and, in turn, its microbial bioavailability is expected to vary due to differences in its composition. It is commonly assumed that DOM of terrestrial origin is resistant to microbial activity because it is composed of more complex aromatic compounds. However, the effect of DOM sources on the microbial reworking and degradation of the DOM pool remains debated.

View Article and Find Full Text PDF

An outbreak of novel betacoronavirus, SARS-CoV-2 (formerly named 2019-nCoV), began in Wuhan, China in December 2019 and the COVID-19 disease associated with infection has since spread rapidly to multiple countries. Here we report the development of SARS-CoV-2 DETECTR, a rapid (~30 min), low-cost, and accurate CRISPR-Cas12 based lateral flow assay for detection of SARS-CoV-2 from respiratory swab RNA extracts. We validated this method using contrived reference samples and clinical samples from infected US patients and demonstrated comparable performance to the US CDC SARS-CoV-2 real-time RT-PCR assay.

View Article and Find Full Text PDF

An outbreak of betacoronavirus severe acute respiratory syndrome (SARS)-CoV-2 began in Wuhan, China in December 2019. COVID-19, the disease associated with SARS-CoV-2 infection, rapidly spread to produce a global pandemic. We report development of a rapid (<40 min), easy-to-implement and accurate CRISPR-Cas12-based lateral flow assay for detection of SARS-CoV-2 from respiratory swab RNA extracts.

View Article and Find Full Text PDF