Vibrational polaritons are formed by strong coupling of molecular vibrations and photon modes in an optical cavity. Experiments have demonstrated that vibrational strong coupling can change molecular properties and even affect chemical reactivity. However, the interactions in a molecular ensemble are complex, and the exact mechanisms that lead to modifications are not fully understood yet.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2024
The quantum dynamics of vibrational polaritonic states arising from the interaction of a bistable molecule with the quantized mode of a Fabry-Perot microcavity is investigated using a generic asymmetric double-well potential as a simplified one-dimensional model of a reactive molecule. After discussing the role of the light-matter coupling strength in the emergence of avoided crossings between polaritonic states, we investigate the possibility of using these crossings to trigger a dynamical switching of these states from one potential well to the other. Two schemes are proposed to achieve this coherent state switching, either by preparing the molecule in an appropriate vibrational excited state before inserting it into the cavity, or by applying a short laser pulse inside the cavity to obtain a coherent superposition of polaritonic states.
View Article and Find Full Text PDFThe quantum dynamics of a low-dimensional system in contact with a large but finite harmonic bath is theoretically investigated by coarse-graining the bath into a reduced set of effective energy states. In this model, the couplings between the system and the bath are obtained from statistically averaging over the discrete, degenerate effective states. Our model is aimed at intermediate bath sizes in which non-Markovian processes and energy transfer between the bath and the main system are important.
View Article and Find Full Text PDFLand-use change may drive viral spillover from bats into humans, partly through dietary shifts caused by decreased availability of native foods and increased availability of cultivated foods. We manipulated diets of Jamaican fruit bats to investigate whether diet influences shedding of a virus they naturally host. To reflect dietary changes experienced by wild bats during periods of nutritional stress, bats were fed either standard or putative suboptimal diets which were deprived of protein (suboptimal-sugar) and/or supplemented with fat (suboptimal-fat).
View Article and Find Full Text PDF