The observation of a weak proton-emission branch in the decay of the 3174-keV Co isomeric state marked the discovery of proton radioactivity in atomic nuclei in 1970. Here we show, based on the partial half-lives and the decay energies of the possible proton-emission branches, that the exceptionally high angular momentum barriers, [Formula: see text] and [Formula: see text], play a key role in hindering the proton radioactivity from Co, making them very challenging to observe and calculate. Indeed, experiments had to wait decades for significant advances in accelerator facilities and multi-faceted state-of-the-art decay stations to gain full access to all observables.
View Article and Find Full Text PDFA nuclear spectroscopy experiment was conducted to study α-decay chains stemming from isotopes of flerovium (element Z=114). An upgraded TASISpec decay station was placed behind the gas-filled separator TASCA at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt, Germany. The fusion-evaporation reactions ^{48}Ca+^{242}Pu and ^{48}Ca+^{244}Pu provided a total of 32 flerovium-candidate decay chains, of which two and eleven were firmly assigned to ^{286}Fl and ^{288}Fl, respectively.
View Article and Find Full Text PDFThe β decay of ^{208}Hg into the one-proton hole, one neutron-particle _{81}^{208}Tl_{127} nucleus was investigated at CERN-ISOLDE. Shell-model calculations describe well the level scheme deduced, validating the proton-neutron interactions used, with implications for the whole of the N>126, Z<82 quadrant of neutron-rich nuclei. While both negative and positive parity states with spin 0 and 1 are expected within the Q_{β} window, only three negative parity states are populated directly in the β decay.
View Article and Find Full Text PDFThe superheavy element with atomic number Z=117 was produced as an evaporation residue in the (48)Ca+(249)Bk fusion reaction at the gas-filled recoil separator TASCA at GSI Darmstadt, Germany. The radioactive decay of evaporation residues and their α-decay products was studied using a detection setup that allowed measuring decays of single atomic nuclei with half-lives between sub-μs and a few days. Two decay chains comprising seven α decays and a spontaneous fission each were identified and are assigned to the isotope (294)117 and its decay products.
View Article and Find Full Text PDFA high-resolution α, x-ray, and γ-ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum für Schwerionenforschung. Thirty correlated α-decay chains were detected following the fusion-evaporation reaction 48Ca + 243Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z=115.
View Article and Find Full Text PDF