Publications by authors named "C F Zukoski"

Over the past two decades Biomedical Engineering has emerged as a major discipline that bridges societal needs of human health care with the development of novel technologies. Every medical institution is now equipped at varying degrees of sophistication with the ability to monitor human health in both non-invasive and invasive modes. The multiple scales at which human physiology can be interrogated provide a profound perspective on health and disease.

View Article and Find Full Text PDF

Dipeptide derivative molecules can self-assemble into space-filling nanofiber networks at low volume fractions (<1%), allowing the formation of molecular gels with tunable mechanical properties. The self-assembly of dipeptide-based molecules is reminiscent of pathological amyloid fibril formation by naturally occurring polypeptides. Fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) is the most widely studied such molecule, but the thermodynamic and kinetic phenomena giving rise to Fmoc-FF gel formation remain poorly understood.

View Article and Find Full Text PDF

The onset of nonlinear responses in near hard sphere suspensions is characterized as a function of oscillatory frequency and strain amplitude. At low frequencies where the viscous behavior dominates, the onset of nonlinearities is driven by increases in rate of strain. At high deformation frequency, where suspension mechanics is dominated by an elastic response, the nonlinear responses occur when deformation exceeds a characteristic strain.

View Article and Find Full Text PDF

We explore the gel transition of the aromatic dipeptide derivative molecule fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF). The addition of water to a solution of Fmoc-FF in dimethyl sulfoxide (DMSO) results in increased attractions leading to self-assembly of Fmoc-FF molecules into a space-filling fibrous network. We provide evidence that gel formation is associated with a first order phase transition resulting in nucleation and growth of strongly anisotropic crystals with high aspect ratios.

View Article and Find Full Text PDF

We report microstructural and rheological consequences of altering silica particle surface chemistry when the particles are suspended in unentangled polyethylene glycol with a molecular weight of 400. The particle surfaces are altered by reacting them with isobutyltrimethyoxysilane. Levels of silanization are chosen so that the particles remain dispersed in the polymer at all volume fractions studied.

View Article and Find Full Text PDF