Publications by authors named "C F Majkrzak"

Flow cells are ubiquitous in laboratories and automated instrumentation, and are crucial for ease of sample preparation, analyte addition and buffer exchange. The assumption that the fluids have exchanged completely in a flow cell is often critical to data interpretation. This article describes the buoyancy effects on the exchange of fluids with differing densities or viscosities in thin, circular flow cells.

View Article and Find Full Text PDF

Among Professor Russell's numerous, original, and significant contributions to polymer science are those in which he helped pioneer the application of neutron reflectometry to the study of thin film systems. For this groundbreaking work, along with his support of neutron scattering methods in general, he was awarded the 2020 Clifford G. Shull Prize by the Neutron Scattering Society of America, named after and in honor of the Nobel Prize laureate.

View Article and Find Full Text PDF

Understanding the interfacial structure-property relationship of complex fluid-fluid interfaces is increasingly important for guiding the formulation of systems with targeted interfacial properties, such as those found in multiphase complex fluids, biological systems, biopharmaceuticals formulations, and many consumer products. Mixed interfacial flow fields, typical of classical Langmuir trough experiments, introduce a complex interfacial flow history that complicates the study of interfacial properties of complex fluid interfaces. In this article, we describe the design, implementation, and validation of a new instrument capable of independent application of controlled interfacial dilation and shear kinematics on fluid interfaces.

View Article and Find Full Text PDF

In the analysis of neutron scattering measurements of condensed matter structure, it normally suffices to treat the incident and scattered neutron beams as if composed of incoherent distributions of plane waves with wavevectors of different magnitudes and directions that are taken to define an instrumental resolution. However, despite the wide-ranging applicability of this conventional treatment, there are cases, such as specular neutron reflectometry, in which the structural length scales of the scattering object require that the wavefunction of an individual neutron in the beam be described by a spatially localized packet - in particular with respect to the transverse extent of its wavefronts ( normal to the packet's mean direction of propagation). It is shown in the present work that neutron diffraction patterns observed for periodic transmission phase gratings, as well as specular reflection measurements from patterned thin films with repeat units of the order of micrometres, can be accurately described by associating an individual neutron with a wave packet and treating a beam as a collection of independent packets.

View Article and Find Full Text PDF

A design for a radio frequency (RF) neutron spin flipper obtained from magneto-static and neutron spin transport simulations is presented. The RF flipper constructed from this design provides a flipping probability of 0.999 or better for a beam size 6 cm wide and 15 cm high and a wavelength band between 0.

View Article and Find Full Text PDF