Ionic liquids (ILs) are novel organic salts that have enormous potential for industrial use as green replacements for harmful volatile organic solvents. Varying the cationic components can alter the chemical and physical properties of ILs, including solubility, to suit a variety of industrial processes. However, to complement designer engineering, it is crucial to proactively characterize the biological impacts of new chemicals, in order to fully define them as environmentally friendly.
View Article and Find Full Text PDFTo model the effects of bacterial metal adsorption in contaminated environments, results from metal adsorption experiments involving individual pure stains of bacteria must be extrapolated to systems in which potentially dozens of bacterial species are present. This extrapolation may be made easier because bacterial consortia from natural environments appear to exhibit similar metal binding properties. However, bacteria that thrive in highly perturbed contaminated environments may exhibit significantly different adsorptive behavior.
View Article and Find Full Text PDFHigh-energy x-ray fluorescence measurements were used to make elemental maps and qualitative chemical analyses of individual Pseudomonas fluorescens strain NCIMB 11764 cells. Marked differences between planktonic and adhered cells were seen in the morphology, elemental composition, and sensitivity to Cr(VI) of hydrated cells at spatial scales of 150 nm. This technology can be applied to natural geomicrobiological systems.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
December 2003
Soil samples were taken from areas of low pH (2.5-3.5) surrounding an outdoor coal storage pile.
View Article and Find Full Text PDF