The development of sustainable and controlled microalgae bioprocesses relies on robust and rapid monitoring tools that facilitate continuous process optimization, ensuring high productivity and minimizing response times. In this work, we analyse the influence of medium formulation on the growth and productivity of axenic Phaeodactylum tricornutumcultures and use the resulting data to develop machine learning (ML) models based on spectroscopy. Our culture assays produced a comprehensive dataset of 255 observations, enabling us to train 55 (24+31) robust models that predict cells or fucoxanthin directly from either absorbance or 2D-fluorescence spectroscopy.
View Article and Find Full Text PDFBioplastics are a sustainable and environmental-friendly alternative to the conventional petroleum-based plastics, namely due to their source (biobased) and due to their biodegradability or both. Polyhydroxyalkanoates (PHA) stand out among the bioplastics group by being intracellular biobased, biodegradable and biocompatible polymers. PHA production has been highly investigated during the last decades.
View Article and Find Full Text PDFPlants are dependent on divisions of stem cells to establish cell lineages required for growth. During embryogenesis, early division products are considered to be stem cells, whereas during post-embryonic development, stem cells are present in meristems at the root and shoot apex. PLETHORA/AINTEGUMENTA-LIKE (PLT/AIL) transcription factors are regulators of post-embryonic meristem function and are required to maintain stem cell pools.
View Article and Find Full Text PDFMembranes (Basel)
December 2022
The monitoring of a membrane bioreactor (MBR) requires the assessment of both biological and membrane performance. Additionally, the development of membrane fouling and the requirements for frequent membrane cleaning are still major concerns during MBR operation, requiring tight monitoring and system characterization. Transmembrane pressure is usually monitored online and allows following the evolution of membrane performance.
View Article and Find Full Text PDFThis work explores the application of Reverse Osmosis (RO) upcycled membranes, as Anion Exchange Membranes (AEMs) in Donnan Dialysis (DD) and related processes, such as the Ion Exchange Membrane Bioreactor (IEMB), for the removal of nitrate from contaminated water, to meet drinking water standards. Such upcycled membranes might be manufactured at a lower price than commercial AEMs, while their utilization reinforces the commitment to a circular economy transition. In an effort to gain a better understanding of such AEMs, confocal µ-Raman spectroscopy was employed, to assess the distribution of the ion-exchange sites through the thickness of the prepared membranes, and 2D fluorescence spectroscopy, to evaluate alterations in the membranes caused by fouling and chemical cleaning The best performing membrane reached a 56% average nitrate removal within 24 h in the DD and IEMB systems, with the latter furthermore allowing for simultaneous elimination of the pollutant by biological denitrification, thus avoiding its discharge into the environment.
View Article and Find Full Text PDF