Publications by authors named "C F Chakarova"

Current estimates suggest 50% of glaucoma blindness worldwide is caused by primary angle-closure glaucoma (PACG) but the causative gene is not known. We used genetic linkage and whole genome sequencing to identify Spermatogenesis Associated Protein 13, SPATA13 (NM_001166271; NP_001159743, SPATA13 isoform I), also known as ASEF2 (Adenomatous polyposis coli-stimulated guanine nucleotide exchange factor 2), as the causal gene for PACG in a large seven-generation white British family showing variable expression and incomplete penetrance. The 9 bp deletion, c.

View Article and Find Full Text PDF

Background: Mutations in pre-mRNA splicing factor PRPF31 can lead to retinitis pigmentosa (RP). Although the exact disease mechanism remains unknown, it has been hypothesized that haploinsufficiency might be involved in the pathophysiology of the disease.

Methods: In this study, we have analyzed a mouse model containing the p.

View Article and Find Full Text PDF

Purpose: We describe the clinical features in two pedigrees with dominantly inherited retinopathy segregating the previously reported frameshifting mutation, c.836dupG (p.Ile280Asn*78) in the terminal exon of the RGR gene, and compare their haplotypes to that of the previously reported pedigree.

View Article and Find Full Text PDF

Background: MSR1 repeats are a 36-38 bp minisatellite element that have recently been implicated in the regulation of gene expression, through copy number variation (CNV).

Patients And Methods: Bioinformatic and experimental methods were used to assess the distribution of MSR1 across the genome, evaluate the regulatory potential of such elements and explore the role of MSR1 elements in cancer, particularly non-familial breast cancer and prostate cancer.

Results: MSR1s are predominately located at chromosome 19 and are functionally enriched in regulatory regions of the genome, particularly regions implicated in short-range regulatory activities (H3K27ac, H3K4me1 and H3K4me3).

View Article and Find Full Text PDF

Retinitis pigmentosa (RP) is the most frequent form of inherited retinal dystrophy. RP is genetically heterogeneous and the genes identified to date encode proteins involved in a wide range of functional pathways, including photoreceptor development, phototransduction, the retinoid cycle, cilia, and outer segment development. Here we report the identification of biallelic mutations in Receptor Expression Enhancer Protein 6 (REEP6) in seven individuals with autosomal-recessive RP from five unrelated families.

View Article and Find Full Text PDF