Publications by authors named "C Estarellas"

Developing new drugs from marketed ones is a well-established and successful approach in drug discovery. We offer a unified view of this field, focusing on the new chemical aspects of the involved approaches: (a) chemical transformation of the original drugs (late-stage modifications, molecular editing), (b) prodrug strategies, and (c) repurposing as a tool to develop new hits/leads. Special focus is placed on the molecular structure of the drugs and their synthetic feasibility.

View Article and Find Full Text PDF

The expansion of the chemical space to tangible libraries containing billions of synthesizable molecules opens exciting opportunities for drug discovery, but also challenges the power of computer-aided drug design to prioritize the best candidates. This directly hits quantum mechanics (QM) methods, which provide chemically accurate properties, but subject to small-sized systems. Preserving accuracy while optimizing the computational cost is at the heart of many efforts to develop high-quality, efficient QM-based strategies, reflected in refined algorithms and computational approaches.

View Article and Find Full Text PDF

High energy consumption in the nervous system requires a continuous supply of O. This role is assisted by proteins from the globin super-family in the nerve cells of invertebrates, where 'nerve hemoglobins' (nHbs) are mainly present at mM concentrations and exhibit oxygen affinities comparable to those of vertebrate myoglobins. To gain insight into the structural bases of this function, we report the crystal structure of nHb from the Atlantic surf clam Spisula solidissima (SsHb), previously suggested to display a bis-histidyl hexa-coordinated heme in the deoxy state, high O affinity, and ligand binding cooperativity when assayed in situ.

View Article and Find Full Text PDF

Non-structural protein 1 (Nsp1) is a main pathogenicity factor of α and βcoronaviruses. Nsp1 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suppresses the host gene expression by sterically blocking 40S host ribosomal subunits and promoting host mRNA degradation. This mechanism leads to the downregulation of the translation-mediated innate immune response in host cells, ultimately mediating the observed immune evasion capabilities of SARS-CoV-2.

View Article and Find Full Text PDF

Endothelial adenosine monophosphate-activated protein kinase (AMPK) plays a critical role in the regulation of vascular tone through stimulating nitric oxide (NO) release in endothelial cells. Since obesity leads to endothelial dysfunction and AMPK dysregulation, AMPK activation might be an important strategy to restore vascular function in cardiometabolic alterations. Here, we report the identification of a novel AMPK modulator, the indolic derivative IND6, which shows affinity for AMPKα1β1γ1, the primary AMPK isoform in human EA.

View Article and Find Full Text PDF