The severity of brain comorbidities in Duchenne muscular dystrophy (DMD) depends on the mutation position within the DMD gene and differential loss of distinct brain dystrophin isoforms (i.e. Dp427, Dp140, Dp71).
View Article and Find Full Text PDFStream macroinvertebrate assemblages are shaped by natural and human-related factors that operate through complex hierarchical pathways. Quantifying these relationships can provide additional insights into stream ecological assessment. We applied a structural equation modeling framework to evaluate hypothesized pathways by which watershed, riparian, and in-stream factors affect benthic macroinvertebrate condition in the Western Mountains (WMT) and Xeric (XER) ecoregions in the United States.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is caused by mutations in the gene that disrupt the open reading frame and thus prevent production of functional dystrophin proteins. Recent advances in DMD treatment, notably exon skipping and AAV gene therapy, have achieved some success aimed at alleviating the symptoms related to progressive muscle damage. However, they do not address the brain comorbidities associated with DMD, which remains a critical aspect of the disease.
View Article and Find Full Text PDFA library of queuine analogues targeting the modification of tRNA isoacceptors for Asp, Asn, His and Tyr catalysed by queuine tRNA ribosyltransferase (QTRT, also known as TGT) was evaluated in the treatment of a chronic multiple sclerosis model: murine experimental autoimmune encephalomyelitis. Several active 7-deazaguanines emerged, together with a structure-activity relationship involving the necessity for a flexible alkyl chain of fixed length.
View Article and Find Full Text PDFAs a leading cause of forest health degradation, non-native invasive plant species are a key focus for many forest management and conservation efforts. These efforts come at a high price for resource-limited agencies and organizations making cost-effectiveness an important objective of invasion response plans. In this paper, we present an approach to guide the prioritization of locations for invasion management using species distribution models that account for the non-equilibrium of invasive species distributions and use readily available land use data as the primary explanatory variables.
View Article and Find Full Text PDF