Publications by authors named "C E Schafmeister"

Here, we report a new class of peptidomimetic macrocycles with well-defined three-dimensional structures and low conformational flexibility. They are assembled from fused-ring spiro-ladder oligomers (spiroligomers) by modular solid-phase synthesis. Two-dimensional nuclear magnetic resonance confirms their shape persistency.

View Article and Find Full Text PDF

We report the fluorenylmethoxycarbonyl (Fmoc) protection of functionalized bis-amino acid building blocks using a temporary Cu complexation strategy, together with an efficient multikilogram-scale synthesis of bis-amino acid precursors. This allows the synthesis of stereochemically and functionally diverse spiroligomers utilizing solid-phase Fmoc/tBu chemistry to facilitate the development of applications. Four tetramers were assembled on a semiautomated microwave peptide synthesizer.

View Article and Find Full Text PDF

The rational design of foldable and functionalizable peptidomimetic scaffolds requires the concerted application of both computational and experimental methods. Recently, a new class of designed peptoid macrocycle incorporating spiroligomer proline mimics (Q-prolines) has been found to preorganize when bound by monovalent metal cations. To determine the solution-state structure of these cation-bound macrocycles, we employ a Bayesian inference method (BICePs) to reconcile enhanced-sampling molecular simulations with sparse ROESY correlations from experimental NMR studies to predict and design conformational and binding properties of macrocycles as functional scaffolds for peptidomimetics.

View Article and Find Full Text PDF

We introduce the efficient Fmoc-SPPS and peptoid synthesis of Q-proline-based, metal-binding macrocycles (QPMs), which bind metal cations and display nine functional groups. Metal-free QPMs are disordered, evidenced by NMR and a crystal structure of QPM- obtained through racemic crystallization. Upon addition of metal cations, QPMs adopt ordered structures.

View Article and Find Full Text PDF