Publications by authors named "C E Osycka-Salut"

After ejaculation, mammalian sperm undergo a series of molecular events conducive to the acquisition of fertilizing competence. These events are collectively known as capacitation and involve acrosomal responsiveness and a vigorous sperm motility called hyperactivation. When mimicked in the laboratory, capacitating bovine sperm medium contains bicarbonate, calcium, albumin and heparin, among other components.

View Article and Find Full Text PDF

The exclusive expression of CatSper in sperm and its critical role in sperm function makes this channel an attractive target for contraception. The strategy of blocking CatSper as a male, non-hormonal contraceptive has not been fully explored due to the lack of robust screening methods to discover novel and specific inhibitors. The reason for this lack of appropriate methodology is the structural and functional complexity of this channel.

View Article and Find Full Text PDF

Early development in mammals is characterized by the ability of each cell to produce a complete organism plus the extraembryonic, or placental, cells, defined as pluripotency. During subsequent development, pluripotency is lost, and cells begin to differentiate to a particular cell fate. This review summarizes the current knowledge of pluripotency features of bovine embryos cultured in vitro, focusing on the core of pluripotency genes (, , , and ), and main chemical strategies for controlling pluripotent networks during early development.

View Article and Find Full Text PDF

With the progressive increase in the use of reproductive biotechnologies in the cattle industry, like artificial insemination and in vitro embryo production, the accurate determination of fertilizing competence of cryopreserved sperm samples is an essential issue. The routine methodology to assess bull sperm quality relies primarily on count, viability and motility of spermatozoa. However, these parameters do not tightly predict the reproductive success of samples.

View Article and Find Full Text PDF

Cryopreservation by negatively affecting sperm quality decreases the efficiency of assisted reproduction techniques (ARTs). Thus, we first evaluated sperm motility at different conditions for the manipulation of equine cryopreserved spermatozoa. Higher motility was observed when spermatozoa were incubated for 30 min at 30 × 10/mL compared to lower concentrations ( < 0.

View Article and Find Full Text PDF