Publications by authors named "C E Holmlund"

Cryogenic electron microscopy (cryo-EM) is constantly developing and growing as a major technique for structure determination of protein complexes. Here, we detail the first steps of any cryo-EM project: specimen preparation and data collection. Step by step, a list of material needed is provided and the sequence of actions to carry out is given.

View Article and Find Full Text PDF
Article Synopsis
  • LRIG proteins (LRIG1, LRIG2, and LRIG3) play crucial roles in regulating growth factor signaling, particularly in adipogenesis and BMP signaling, as demonstrated in Lrig-null mouse embryonic fibroblasts (MEFs).
  • While LRIG1 and LRIG3 can restore BMP signaling defects, LRIG2 does not contribute to this function.
  • Human LRIG1 variants are linked to higher body mass index (BMI) but provide a protective effect against type 2 diabetes, likely by affecting adipocyte structure.
View Article and Find Full Text PDF

Objectives: The human leucine-rich repeats and immunoglobulin-like domains (LRIG) protein family comprises the integral membrane proteins LRIG1, LRIG2 and LRIG3. LRIG1 is frequently down-regulated in human cancer, and high levels of LRIG1 in tumor tissue are associated with favorable clinical outcomes in several tumor types including non-small cell lung cancer (NSCLC). Mechanistically, LRIG1 negatively regulates receptor tyrosine kinases and functions as a tumor suppressor.

View Article and Find Full Text PDF

Recently, a genome-wide association study showed that a single nucleotide polymorphism (SNP) -rs11706832-in intron 2 of the human LRIG1 (Leucine-rich repeats and immunoglobulin-like domains 1) gene is associated with susceptibility to glioma. However, the mechanism by which rs11706832 affects glioma risk remains unknown; additionally, it is unknown whether the expression levels of LRIG1 are a relevant determinant of gliomagenesis. Here, we investigated the role of Lrig1 in platelet-derived growth factor (PDGF)-induced experimental glioma in mice by introducing mono-allelic and bi-allelic deletions of Lrig1 followed by inducing gliomagenesis via intracranial retroviral transduction of PDGFB in neural progenitor cells.

View Article and Find Full Text PDF

Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is a tumor suppressor and a negative regulator of several receptor tyrosine kinases. The molecular mechanisms by which LRIG1 mediates its tumor suppressor effects and regulates receptor tyrosine kinases remain incompletely understood. Here, we performed a yeast two-hybrid screen to identify novel LRIG1-interacting proteins and mined data from the BioPlex (biophysical interactions of ORFeome-based complexes) protein interaction data repository.

View Article and Find Full Text PDF