Publications by authors named "C E Gargett"

Endometriosis is a common gynecologic condition that causes chronic life-altering symptoms including pain, infertility, and elevated cancer risk. There is an urgent need for new non-hormonal targeted therapeutics to treat endometriosis, but until very recently, the cellular and molecular signatures of endometriotic lesions were undefined, severely hindering the development of clinical advances. Integrating inherited risk data from analyses of >450,000 individuals with ∼350,000 single cell transcriptomes from 21 patients, we uncover M2-macrophages as candidate drivers of disease susceptibility, and nominate IL1 signaling as a central hub impacted by germline genetic variation associated with endometriosis.

View Article and Find Full Text PDF

Pelvic organ prolapse (POP) is a highly prevalent yet neglected health burden for women. Strengthening thepelvic floor with bioactive tissue-engineered meshes is an emerging concept. The study investigates tissue regenerative design parameters, including degradability, porosity, and angulation, to develop alternative degradable melt electrowritten (MEW) constructs for surgical applications of POP.

View Article and Find Full Text PDF

Not discounting the important foetal or placental contribution, the endometrium is a key determinant of pregnancy outcomes. Given the inherently linked processes of menstruation, pregnancy and parturition with the endometrium, further understanding of menstruation will help to elucidate the maternal contribution to pregnancy. Endometrial health can be assessed via menstrual history and menstrual fluid, a cyclically shed, easily and non-invasively accessible biological sample that represents the distinct, heterogeneous composition of the endometrial environment.

View Article and Find Full Text PDF

three-dimensional (3D) models are better able to replicate the complexity of real organs and tissues than 2D monolayer models. The human endometrium, the inner lining of the uterus, undergoes complex changes during the menstrual cycle and pregnancy. These changes occur in response to steroid hormone fluctuations and elicit crosstalk between the epithelial and stromal cell compartments, and dysregulations are associated with a variety of pregnancy disorders.

View Article and Find Full Text PDF

Pelvic Organ Prolapse (POP) is a common gynaecological disorder where pelvic organs protrude into the vagina. While transvaginal mesh surgery using non-degradable polymers was a commonly accepted treatment for POP, it has been associated with high rates of adverse events such as mesh erosion, exposure and inflammation due to serious foreign body response and therefore banned from clinical use after regulatory mandates. This study proposes a tissue engineering strategy using uterine endometrium-derived mesenchymal stem/stromal cells (eMSC) delivered with degradable poly L-lactic acid-co-poly ε-caprolactone (PLACL) and gelatin (G) in form of a composite electrospun nanofibrous mesh (P + G nanomesh) and evaluates the immunomodulatory mechanism at the material interfaces.

View Article and Find Full Text PDF