Estrogens play a pivotal role in breast cancer etiology, and endocrine therapy remains the main first line treatment for estrogen receptor-alpha (ERα)-positive breast cancer. ER are transcription factors whose activity is finely regulated by various regulatory complexes, including histone deacetylases (HDACs). Here, we investigated the role of HDAC9 in ERα signaling and response to antiestrogens in breast cancer cells.
View Article and Find Full Text PDFGenes that are highly conserved in food seeking behaviour, such as protein kinase G (PKG), are of interest because of their potential role in the global obesity epidemic. PKG1α can be activated by binding of cyclic guanosine monophosphate (cGMP) or oxidant-induced interprotein disulfide bond formation between the two subunits of this homodimeric kinase. PKG1α activation by cGMP plays a role in reward and addiction through its actions in the ventral tegmental area (VTA) of the brain.
View Article and Find Full Text PDFHistone lysine acetylation is an epigenetic mark regulated by histone acetyltransferases and histone deacetylases (HDAC) which plays an important role in tumorigenesis. In this study, we observed a strong overexpression of class IIa HDAC9, at the mRNA and protein levels, in the most aggressive human breast cancer cell lines (i.e.
View Article and Find Full Text PDFNeurogastroenterol Motil
April 2015
Background: μ opioid receptors (μORs) are expressed by neurons and inflammatory cells, and mediate immune response. We tested whether activation of peripheral μORs ameliorates the acute and delayed phase of colitis.
Methods: C57BL/6J mice were treated with 3% dextran sodium sulfate (DSS) in water, 5 days with or without the peripherally acting μOR agonist, [D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin (DAMGO) or with DAMGO+μOR antagonist at day 2-5, then euthanized.
Opioids, acting at μ opioid receptors, are commonly used for pain management. Chronic opioid treatment induces cellular adaptations, which trigger long-term side effects, including constipation mediated by enteric neurons. We tested the hypothesis that chronic opioid treatment induces alterations of μ opioid receptor signaling in enteric neurons, which are likely to serve as mechanisms underlying opioid-induced constipation.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.