Background: Cardiac magnetic resonance imaging protocols have been adapted to fit the needs for faster, more efficient acquisitions, resulting in the development of highly accelerated, compressed sensing-based (CS) sequences. The aim of this study was to evaluate intersoftware and interacquisition differences for postprocessing software applied to both CS and conventional cine sequences.
Materials And Methods: A total of 106 individuals (66 healthy volunteers, 40 patients with dilated cardiomyopathy, 51% female, 38±17 y) underwent cardiac magnetic resonance at 3T with retrospectively gated conventional cine and CS sequences.
Objectives: Cardiac involvement in Anderson-Fabry disease (AFD) results in myocardial lipid depositions. An early diagnosis can maximize therapeutic benefit. Thus, this study aims to investigate the potential of cardiac MRI (CMR) based parameters of left atrial (LA) function and strain to detect early stages of AFD.
View Article and Find Full Text PDFIntrahepatic cholangiocarcinomas (iCCAs) may be subdivided into large and small duct types that differ in etiology, molecular alterations, therapy, and prognosis. Therefore, the optimal iCCA subtyping is crucial for the best possible patient outcome. In our study, we analyzed 148 small and 84 large duct iCCAs regarding their clinical, radiological, histological, and immunohistochemical features.
View Article and Find Full Text PDFObjectives: To compare volumetric and functional parameters of the atria derived from highly accelerated compressed sensing (CS)-based cine sequences in comparison to conventional (Conv) cine imaging.
Methods: CS and Conv cine sequences were acquired in 101 subjects (82 healthy volunteers (HV) and 19 patients with heart failure with reduced ejection fraction (HFrEF)) using a 3T MR scanner in this single-center study. Time-volume analysis of the left (LA) and right atria (RA) were performed in both sequences to evaluate atrial volumes and function (total, passive, and active emptying fraction).